
OPC Historical Data Access Custom Interface Specification 1.0

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

i

 TM

Historical Data Access Custom Interface
Standard

Version 1.1

OPC Historical Data Access Custom Interface Specification 1.0

Specification Type Industry Standard Specification

Title: OPC Historical Data

Access Custom Interface
Specification

Date: January 26, 2001

Version: 1.1 Soft MS-Word
 Source: OPC_HIST_Cust.doc

Author: Opc Foundation Status: Release

Synopsis:

This specification is the specification of the interface for developers of OPC
clients and OPC servers. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of
servers and clients by multiple vendors that shall inter-operate seamlessly
together.

Trademarks:
Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:
This specification requires Windows 95 / Windows NT 4.0 or later

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

ii

OPC Historical Data Access Custom Interface Specification 1.0

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzers in order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights)
in the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

GENERAL PROVISIONS:

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

iii

OPC Historical Data Access Custom Interface Specification 1.0

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, P.O. Box
140524, Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

iv

OPC Historical Data Access Custom Interface Specification 1.0

Table of Contents

1. INTRODUCTION.. 1
1.1. BACKGROUND ... 1
1.2. PURPOSE.. 1
1.3. RELATIONSHIP TO OTHER OPC SPECIFICATIONS... 1
1.4. SCOPE.. 1

1.4.1. General ... 1
1.4.2. Multiple Levels of Capability.. 2
1.4.3. Types of Historian Servers ... 2

1.5. REFERENCES.. 2
1.6. AUDIENCE ... 2
1.7. DELIVERABLES.. 2

2. OPC-HDA FUNDAMENTALS... 4
2.1. OVERVIEW .. 4
2.2. DATA SOURCES ... 5
2.3. GENERAL ARCHITECTURE AND COMPONENTS ... 6
2.4. OVERVIEW OF OBJECT AND INTERFACES... 7
2.5. REQUIRED INTERFACE DEFINITION.. 9
2.6. OPTIONAL INTERFACE DEFINITION.. 9
2.7. FUNDAMENTAL CONCEPTS.. 9

3. OPC-HDA QUICK REFERENCE ... 11
3.1. CUSTOM INTERFACE.. 11

3.1.1. IOPCCommon .. 11
3.1.2. IOPCHDA_Server .. 11
3.1.3. IOPCHDA_Browser ... 12
3.1.4. IOPCHDA_SyncRead... 12
3.1.5. IOPCHDA_SyncUpdate (optional) .. 13
3.1.6. IOPCHDA_SyncAnnotations (optional)... 13
3.1.7. IOPCHDA_AsyncRead (optional) .. 14
3.1.8. IOPCHDA_AsyncUpdate (optional) .. 15
3.1.9. IOPCHDA_AsyncAnnotations (optional)... 16
3.1.10. IOPCHDA_Playback (optional)... 16
3.1.11. IConnectionPointContainer (required if any Async interface is supported) 17
3.1.12. IOPCHDA_DataCallback .. 17

4. OPC-HDA CUSTOM INTERFACE .. 19
4.1. OVERVIEW OF THE OPC HDA CUSTOM INTERFACE ... 19
4.2. GENERAL INFORMATION ... 19

4.2.1. Ownership of memory... 19
4.2.2. Standard Interfaces .. 20
4.2.3. Null Strings and Null Pointers.. 20
4.2.4. Returned Arrays.. 20
4.2.5. Asynchronous vs. Synchronous Interfaces.. 20
4.2.6. Errors and return codes ... 21
4.2.7. IUnknown ... 21

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

v

OPC Historical Data Access Custom Interface Specification 1.0

4.3. IOPCCOMMON.. 21
4.4. SYNCHRONOUS INTERFACES ... 22

4.4.1. IOPCHDA_Server .. 22
4.4.1.1. IOPCHDA_Server::GetItemAttributes ... 22
4.4.1.2. IOPCHDA_Server::GetAggregates .. 23
4.4.1.3. IOPCHDA_Server::GetHistorianStatus .. 23
4.4.1.4. IOPCHDA_Server::GetItemHandles .. 24
4.4.1.5. IOPCHDA_Server::ReleaseItemHandles.. 25
4.4.1.6. IOPCHDA_Server::ValidateItemIDs.. 26
4.4.1.7. IOPCHDA_Server::CreateBrowse.. 26

4.4.2. IOPCHDA_Browser ... 28
4.4.2.1. IOPCHDA_Browser::GetEnum.. 28
4.4.2.2. IOPCHDA_Browser::ChangeBrowsePosition.. 28
4.4.2.3. IOPCHDA_Browser::GetItemID.. 29
4.4.2.4. IOPCHDA_Browser::GetBranchPosition... 29

4.4.3. IOPCHDA_SyncRead... 30
4.4.3.1. IOPCHDA_SyncRead::ReadRaw... 30
4.4.3.2. IOPCHDA_SyncRead::ReadProcessed .. 32
4.4.3.3. IOPCHDA_SyncRead::ReadAtTime.. 34
4.4.3.4. IOPCHDA_SyncRead::ReadModified ... 35
4.4.3.5. IOPCHDA_SyncRead::ReadAttribute.. 37

4.4.4. IOPCHDA_SyncUpdate ... 38
4.4.4.1. IOPCHDA_SyncUpdate::QueryCapabilities .. 38
4.4.4.2. IOPCHDA_SyncUpdate::Insert .. 39
4.4.4.3. IOPCHDA_ SyncUpdate::Replace ... 40
4.4.4.4. IOPCHDA_ SyncUpdate::InsertReplace .. 41
4.4.4.5. IOPCHDA_ SyncUpdate::DeleteRaw .. 43
4.4.4.6. IOPCHDA_ SyncUpdate::DeleteAtTime ... 44

4.4.5. IOPCHDA_SyncAnnotations.. 45
4.4.5.1. IOPCHDA_SyncAnnotations::QueryCapabilities .. 45
4.4.5.2. IOPCHDA_SyncAnnotations::Read ... 45
4.4.5.3. IOPCHDA_SyncAnnotations:: Insert ... 47

4.5. ASYNCHRONOUS INTERFACES ... 47
4.5.1. IOPCHDA_AsyncRead... 48

4.5.1.1. IOPCHDA_AsyncRead::ReadRaw... 48
4.5.1.2. IOPCHDA_AsyncRead::AdviseRaw.. 50
4.5.1.3. IOPCHDA_AsyncRead::ReadProcessed .. 51
4.5.1.4. IOPCHDA_AsyncRead::AdviseProcessed ... 53
4.5.1.5. IOPCHDA_AsyncRead::ReadAtTime.. 54
4.5.1.6. IOPCHDA_AsyncRead::ReadModified ... 55
4.5.1.7. IOPCHDA_AsyncRead::ReadAttribute.. 57
4.5.1.8. IOPCHDA_AsyncRead::Cancel ... 58

4.5.2. IOPCHDA_AsyncUpdate ... 59
4.5.2.1. IOPCHDA_AsyncUpdate::QueryCapabilities .. 59
4.5.2.2. IOPCHDA_AsyncUpdate::Insert.. 59
4.5.2.3. IOPCHDA_AsyncUpdate::Replace .. 60
4.5.2.4. IOPCHDA_AsyncUpdate::InsertReplace ... 61
4.5.2.5. IOPCHDA_AsyncUpdate::DeleteRaw ... 63
4.5.2.6. IOPCHDA_AsyncUpdate::DeleteAtTime .. 64
4.5.2.7. IOPCHDA_AsyncUpdate::Cancel.. 65

4.5.3. IOPCHDA_AsyncAnnotations.. 65
4.5.3.1. IOPCHDA_ AsyncAnnotations::QueryCapabilities ... 65
4.5.3.2. IOPCHDA_AsyncAnnotations::Read... 66
4.5.3.3. IOPCHDA_AsyncAnnotations::Insert .. 67
4.5.3.4. IOPCHDA_AsyncAnnotations::Cancel .. 68

4.6. PLAYBACK INTERFACE.. 69
4.6.1. IOPCHDA_Playback.. 69

4.6.1.1. IOPCHDA_Playback::ReadRawWithUpdate ... 69
4.6.1.2. IOPCHDA_Playback::ReadProcessedWithUpdate... 71

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

vi

OPC Historical Data Access Custom Interface Specification 1.0

4.6.1.3. IOPCHDA_Playback::Cancel... 73
4.7. ICONNECTIONPOINTCONTAINER INTERFACE .. 73

4.7.1. IConnectionPointContainer.. 73
4.7.1.1. IConnectionPointContainer::EnumConnectionPoints... 73
4.7.1.2. IConnectionPointContainer::FindConnectionPoint... 74

4.8. CLIENT INTERFACES.. 74
4.8.1. IOPCHDA_DataCallback .. 75

4.8.1.1. IOPCHDA_DataCallback::OnDataChange .. 75
4.8.1.2. IOPCHDA_DataCallback::OnReadComplete .. 76
4.8.1.3. IOPCHDA_DataCallback::OnReadModifiedComplete.. 77
4.8.1.4. IOPCHDA_DataCallback::OnReadAttributesComplete... 78
4.8.1.5. IOPCHDA_DataCallback::OnReadAnnotations... 79
4.8.1.6. IOPCHDA_DataCallback::OnInsertAnnotations.. 80
4.8.1.7. IOPCHDA_DataCallback::OnPlayback ... 81
4.8.1.8. IOPCHDA_DataCallback::OnUpdateComplete ... 82
4.8.1.9. IOPCHDA_DataCallback::OnCancelComplete.. 83

5. DESCRIPTION OF DATA TYPES, PARAMETERS AND STRUCTURES 84
5.1. OPCHDA_QUALITY.. 84
5.2. OPCHDA ITEM ATTRIBUTES.. 85
5.3. STRUCTURES AND MASKS ... 87

5.3.1. OPCHDA_ITEM... 87
5.3.2. OPCHDA_EDITTYPE.. 88
5.3.3. OPCHDA_AGGREGATE... 88
5.3.4. OPCHDA_TIME... 89
5.3.5. OPCHDA_ATTRIBUTE ... 90
5.3.6. OPCHDA_MODIFIEDITEM ... 91
5.3.7. OPCHDA_ANNOTATION.. 91
5.3.8. OPCHDA_OPERATORCODES... 92
5.3.9. OPCHDA_UPDATECAPABILITIES ... 92
5.3.10. OPCHDA_ANNOTATIONCAPABILITIES .. 93
5.3.11. OPCHDA_BROWSETYPE ... 93
5.3.12. OPCHDA_BROWSEDIRECTION.. 93
5.3.13. OPCHDA_SERVERSTATUS.. 93

6. COMPONENT CATEGORIES REGISTRATION .. 95
6.1. SERVER REGISTRATION ... 95
6.2. CLIENT ENUMERATION.. 96

7. APPENDIX A – HISTORICAL DATA ACCESS IDL SPECIFICATION 98

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

vii

OPC Historical Data Access Custom Interface Specification 1.0

1. Introduction
1.1. Background
Today with the level of automation that is being applied in manufacturing, people are dealing with
higher and higher amounts of information.

Historical engines today produce an added source of information that must be distributed to users and
software clients that are interested in this information. Currently most historical systems use their own
proprietary interfaces for dissemination of data. There is no capability to augment or use existing
historical solutions with other capabilities in a plug-n-play environment. This requires the developer to
recreate the same infrastructure for their products as all other vendors have had to develop
independently with no interoperability with any other systems.

In keeping with the desire to integrate data at all levels of a business (as was stated in the OPC Data
background information), historical information can be considered to be another type of data. This
information is a valuable component of the information architecture outlined in the OPC Data
specification.

Manufacturers and consumers want to use off the shelf, open solutions from vendors that offer
superior value that solves a specific need or problem.

1.2. Purpose
A growing number of custom applications are being developed in environments like Visual Basic
(VB), Delphi, Power Builder, etc. OPC must take this trend into account. Microsoft understands this
trend and designed OLE/COM to allow components (written in C and C++ by experts in a specific
domain) to be utilized by a custom program (written in VB or Delphi for an entirely different domain).
Developers will write software components in C and C++ to encapsulate the intricacies of accessing
Historical data, so that business application developers can write code in VB that requests and utilizes
historical data.

The intent of this specification is to facilitate the development of OPC Servers for Historical Data
Access in C and C++, and to facilitate development of OPC client applications in the language of
choice. The architecture and design of the interfaces described in this specification are intended to
support development of OPC servers in other languages as well.

This specification tries to identify interfaces used to pass historical information between components
which would be suitable to standardization. Additionally this document details the design of those
interfaces in such a way as to complement the existing OPC Data Access Interfaces.

1.3. Relationship to Other OPC Specifications
There is a loose binding between this and other OPC specifications. This OPC specification is not
derived from, nor does it inherit interfaces from, another OPC specification. Where identical
interfaces are desired, they are replicated here. Data types are assumed from the Data Access
specification. The interfaces in this document provide Historical data. If real time data is desired, a
Data Access server and it’s interfaces should be used.

1.4. Scope
This document represents the initial release of the HDA specification. The scope of this release was
purposely limited to defining interfaces to support the reading, writing, and editing of historical data
between client applications and historical data servers. Additional functionality was deferred to future
releases of this specification.

1.4.1. General
This document specifies the interfaces a historian is required to support to be classified an OPC
Historian server. It does not intend to define the underlining architecture of the historian.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

1

OPC Historical Data Access Custom Interface Specification 1.0

1.4.2. Multiple Levels of Capability
The OPC Historian specification accommodates a variety of applications that need to provide
Historical data. In particular, there are multiple levels of capability for handling historical
functionality, from the simple to the sophisticated. The simple historian may only support one or two
of the interfaces.

1.4.3. Types of Historian Servers
There are several types of Historian servers. Some key types supported by this specification are:

• Simple Trend data servers. These servers provided little else then simple raw data storage. (Data
would typically be the types of data available from an OPC Data Access server, usually provided
in the form of a tuple [Time, Value & Quality])

• Complex data compression and analysis servers. These servers provide data compression as well
as raw data storage. They are capable of providing summary data or data analysis functions, such
as average values, minimums and maximums etc. They can support data updates and history of
the updates. They can support storage of annotations along with the actual historical data storage.

These different servers are all covered under this specification by optional interfaces. If a server
does not support a group of functions, it is not required to implement the optional interface for
that functional group.

1.5. References
OLE for Process Control Standard – RELEASE UPDATE Version 1.0A, OPC Foundation, May 27,
1997.

The Component Object Model Specification, Version 0.9, Microsoft Corporation, (available from
Microsoft’s FTP site), October 24, 1995.

Kraig Brockschmidt , Inside OLE, Second Edition, Microsoft Press, Redmond, WA, 1995.

OLE Automation Programming Reference, Microsoft Press, Redmond, WA, 1996.

OLE 2 Programming Reference, Vol. 1, Microsoft Press, Redmond, WA, 1994.

The OPC Data Access Custom Interface Specification 2.0, OPC Foundation 1998.

The OPC Alarms and Events Specification 1.0, OPC Foundation 1998

The OPC Common Definition and Interface Specification Version 1.0, OPC Foundation, 1998

1.6. Audience
This document is intended to be used as reference material for developers of OPC compliant historical
clients and servers. It is assumed that the reader is familiar with Microsoft OLE/COM technology, the
needs of the process control industry and the OPC Data 2.0 specification.

This specification is intended to facilitate development of OPC Servers in C and C++, and of OPC
client applications in the language of choice. Therefore, the developer of the respective component is
expected to be fluent in the technology required for the specific component.
1.7. Deliverables
The deliverables from the OPC Foundation with respect to the OPC Historical Specification 1.0
include the Specification itself, OPC IDL files (included in this document as Appendices), an
Automation Interface Wrapper, and the OPC Error header files (included in this document). As a
convenience, standard proxy stub DLLs and a standard Historical Header file for the OPC interfaces
generated directly from the IDL will be provided at the OPC Foundation Web Site.

This OPC Historical specification contains design information for the following:

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

2

OPC Historical Data Access Custom Interface Specification 1.0

1. The OPC Historical Custom Interface - This section will describe the Interfaces and Methods of
OPC Components and Objects.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

3

OPC Historical Data Access Custom Interface Specification 1.0

2. OPC-HDA Fundamentals
2.1. Overview
This specification describes the OPC COM Objects and their interfaces implemented by OPC
Historical Servers. An OPC Client can connect to OPC Historical Servers provided by one or more
vendors. Different vendors may provide OPC Historian Servers. Vendor supplied code determines the
data to which each server has access, the data names, and the details about how the server physically
accesses that data. Vendors may also provide other OPC Servers along with their OPC Historical Data
server, but they are not required to. The following figure illustrates possible OPC Vendor server
configurations:

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

4

OPC Historical Data Access Custom Interface Specification 1.0

OPC Client #1

OPC
Historian
Server

Vendor A

OPC
Historian
Server

Vendor C

OPC
Historian
Server

Vendor B
OPC Client #2

OPC Client #3

OPC Data
Server

Vendor A

OPC Alarm
Server

Vendor B

Figure 1 - Server Interactions

Any vendor or even a vendor that does not provide a server can provide the clients. The client should
be able to function with any of the servers. If another OPC server is required (such as Data Access
server) for full functionality, the client should still be able to operate on Historical data without the
other OPC server.

2.2. Data Sources
The OPC Historical Data Server provides a way to access or communicate to a set of Historical data
sources. The types of sources available are a function of the server implementation.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

5

OPC Historical Data Access Custom Interface Specification 1.0

Operator
Station 2

Operator
Trend Display

Event
Logger, etc.

OPC Historian Server

server client

Proprietary
Historian Server

OPC Historian
Server

Proprietary Data
Server

OPC Data
Access Server

Figure 2 - Possible OPC Historian Servers

The server may be implement as a stand alone OPC Historical Data Server that collects data from an
OPC Data Access server or another data source. It may also be a set of interfaces that are layered on
top of an existing Proprietary Historical Data Server. The clients that reference the OPC Historical
Data server may be simple trending packages that just want values over a given time frame or they
may be complex reports that require data in multiple formats.

2.3. General Architecture and components
An OPC client application communicates to an OPC Historical Data server through the specified OPC
custom and automation interfaces. OPC Historical Data servers must implement the custom interface,
and optionally may implement the automation interface.

C++ Application

VB Application

OPC Custom I/F

OPC Automation I/F

OPC Historical Data Server
(In-Proc, Local, Remote,

Handler)
Vendor Specific Logic

The OPC Specification specifies COM interfaces (what the interfaces are), not the implementation (not
the how of the implementation) of those interfaces. It specifies the behavior that the interfaces are
expected to provide to the client applications that use them.

Included are descriptions of architectures and interfaces that seemed most appropriate for those
architectures. Like all COM implementations, the architecture of OPC is a client-server model where
the OPC Server component provides an interface to the OPC objects and manages them.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

6

OPC Historical Data Access Custom Interface Specification 1.0

An inproc (OPC handler) may be used to marshal the interface and provide the additional Item level
functionality of the OPC Automation Interface.

OPC Automation
Wrapper

VB
Application

C++
Application

Local or Remote OPC
Historical Data Server

OPC Automation Interface

OPC Custom Interface

The OPC automation interface may be implemented via a wrapper. A generic wrapper may be
provided by the OPC foundation. This wrapper would provide the automation interface for any
Custom interface.

2.4. Overview of Object and Interfaces
The OPC Historical Data server objects provide the ability to read data from a historical server and
write data to a historical server. The types of historical data are server dependent. All COM objects are
accessed through Interfaces. The client sees only the interfaces. Thus, the objects described here are
‘logical’ representations which may not have anything to do with the actual internal implementation of
the server. The following figures are a summary of the OPC Objects and their interfaces. Note that
some of the interfaces are Optional (as indicated by []).

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

7

OPC Historical Data Access Custom Interface Specification 1.0

Historian Server Model
(Two Objects)

IOPCHDA_
Browser
Object

IOPCHDA_Browser

IUnknown

[IOPCHDA_SyncAnnotations]

IOPCHDA_
Server
Object

IOPCCommon

IOPCHDA_SyncRead

[IOPCHDA_SyncUpdate]

[IOPCHDA_AsyncUpdate]

[IOPCHDA_AsyncAnnotations]

[IOPCHDA_AsyncRead]

[IOPCHDA_Playback]

IUnknown

IConnectionPointContainer

IOPCHDA_Server

[IOPCHDA_SyncAnnotations]

Figure 3 - Model Overview

The browser interface provides a method for the client to review the address space of the historian. It is
expected that this address space may be hierarchical for some servers and flat for others. This interface is
designed to support the hierarchical view, with a flat address space represented as a single level
hierarchical view. The browser interface is essential in most large historical data servers, it allows a client
to review the address space in a simple graphical manner.

An OPC Historian Client application must implement a callback interface to support a shutdown request.
The client may also implement interfaces for the various asynchronous connections that a server may
provide. If the client expects to use (and the server provides) a particular asynchronous interface, the client
must implement the matching callback.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

8

OPC Historical Data Access Custom Interface Specification 1.0

Historian Client Model

[IOPCHDA_UpdateCallback]

IUnknown

IOPCHDA_Shutdown

[IOPCHDA_ReadCallback]

[IOPCHDA_AnnotationsCallback]

IOPCHDA_
Client
Object

Figure 4 - Client Model Overview

The shutdown request is required to allow the OPC Historical Data Server to shutdown cleanly. When
accessed by the HDA server, the client should free server provided memory (see Custom interface
memory section) and terminate all connections.

2.5. Required Interface Definition
OPC Historical Data server developers must implement all methods of required interfaces, and must
implement all functionality of required methods. An OPC Historical client communicates to an OPC
Historical Data server by calling functions from the OPC required interfaces. An OPC Historical Data
server may return E_NOTIMPL for optional methods on required interfaces.

2.6. Optional Interface Definition
OPC Historical Data server developers may implement the functionality of the optional interfaces.

An optional interface is one that the server developer may elect to implement. When an OPC
Historical Data server supports an optional interface, all functions within that optional interface must
be implemented, even if the function just returns E_NOTIMPL. An OPC Historical client that wishes
to use the functionality of an optional interface will query the OPC Historical Data server for the
optional interface. The client must be designed to not require that this optional interface exist.

2.7. Fundamental Concepts
The following terms and concepts used in this specification are commonly used in Historians but can
be defined by different vendors to have slightly different definitions. Their definitions as used in this
specification are listed below.

Attribute – An additional qualifier that a particular item may have associated with it. For example, an
“Item Value” property would probably have the following attributes associated with it: “Data Type”
(VT_R4), “Stepped” (0) and “Archiving”(1)., i.e. the “Item Value” returns a real-4 number, the value
can be displayed as interpolated (sloped line) and data is being archived

Aggregates – Methods that summarize data values. Common aggregates include Averages over a
given time range, Minimum over a time range and Maximum over a time range. These aggregates are
performed during the retrieval of the data.

Annotations - An operator or user entered comment that is associated with an item, usually at a given
instance in time. There does not have to be a value stored at that time.

Bounding Values - Bounding values are required by clients to determine the entry and exit points
when requesting raw data over a time range. If a raw data value exists at the entry or exit point, it is

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

9

OPC Historical Data Access Custom Interface Specification 1.0

considered the bounding value even though it is part of the data request. If no raw data value exists at
the entry or exit point, the next data point outside of the range is considered the bounding point.

For example, given that a historian has values stored at 5:00, 5:02, 5:03, 5:05 and 5:06 the data
returned is given by the following table.

Start Time End Time Bounds Data Returned
5:00 5:05 Yes 5:00, 5:02, 5:03, 5:05
5:00 5:05 No 5:00, 5:02, 5:03, 5:05
5:01 5:04 Yes 5:00, 5:02, 5:03, 5:05
5:01 5:04 No 5:02, 5:03

Interpolated Data – Data that is linearly derived between two stored data points.

Item Handles – The ItemHandle can be either a client or server value. It is used by the owner to
speed access to the items. Its data type is OPCHandle (DWORD).

It is expected that a client will assign a unique value to the client handle if it intends to use any of the
asynchronous functions of the OPC HDA interfaces. However, the server should not make any
assumptions about the client handle and the client should not make any assumptions about the server
handle. Uniqueness of the item handles are implementation dependent.

Item ID - The string that is a reference to a piece of data in the server address space.

Modified values – A value that has been changed after it was stored in the historian. A lab data entry
value is not a modified value, but if a user corrects a lab value the new value would be modified.

Properties – Within the Automation interface, properties are attributes of the history server that
indicate how it operates.

Raw Data - Data that is stored within the historian. The data may be compressed or may be all data
collected for the item depending on the historian and the storage rules invoked when the item values
were saved.

Start Time / End Time – The times bounding a history request (inclusive).

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

10

OPC Historical Data Access Custom Interface Specification 1.0

3. OPC-HDA Quick Reference
3.1. Custom Interface
Note: This section does not show additional standard enumerators used by this interface.

3.1.1. IOPCCommon

HRESULT SetLocaleID (dwLcid)
Description Set the default LocaleID for this server/client session. This LocaleID will be used by

the GetErrorString method on this interface. It should also be used as the ‘default’
LocaleID by any other server functions that are affected by LocaleID. Other OPC
interfaces may provide additional LocaleID capability by allowing this LocaleID to be
overridden either via a parameter to a method or via a property on a child object.

HRESULT GetLocaleID (pdwLcid)
Description Return the default LocaleID for this server/client session.

HRESULT QueryAvailableLocaleIDs (pdwCount, ppdwLcid)
Description Return the available LocaleIDs for this server/client session.

HRESULT GetErrorString(dwError, pszString)
Description Returns the error string for a server specific error code.

HRESULT SetClientName (pszName)
Description Allows the client to optionally register a client name with the server.

3.1.2. IOPCHDA_Server

HRESULT GetItemAttributes(pdwCount , ppdwAttrID, ppszAttrName, ppszAttrDesc,

ppvtAttrDataType)
Description This function returns the item attributes supported by the server. The OPC defined

attribute types are defined in section (5.2). Vendor specific attributes are also
supported. The vendor supplied attributes are made available to allow the client to
access and display vendor specific information. Attribute data types are intended to
allow query filtering when browsing item ids. This method will support, as a
minimum, the OPCHDA_DATA_TYPE attribute.

HRESULT GetAggregates(pdwCount , ppdwAggrID, ppszAggrName, ppszAggrDesc)
Description This function returns the list of aggregates supported by the server. The OPC defined

aggregates are defined in section 5.3.3. Vendor specific aggregates are also supported.
The vendor supplied aggregates are made available to allow the client to use all the
functions available to their specific server. If no aggregates are supported by the
server, all pointers are NULL.

HRESULT GetHistorianStatus(pwStatus, pftCurrentTime, pftStartTime, pwMajorVersion,

pwMinorVersion, pwBuildNumber, pdwMaxReturnValues, ppszStatusString,
ppszVendorInfo)

Description This function returns the information on the current status of the server. The start time
is optional and may be returned as a NULL pointer.

HRESULT GetItemHandles(dwCount, pszItemID, phClient, pphServer, ppErrors)

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

11

OPC Historical Data Access Custom Interface Specification 1.0

Description This function returns associations between server handles and client handles for
specific HDA items.

HRESULT ReleaseItemHandles(dwCount, phServer, ppErrors)
Description This function releases associations between server handles and client handles for

specific HDA items.

HRESULT ValidateItemIDs(dwCount, pszItemID, ppErrors)
Description This function validates that specific HDA item IDs are known to the server.

HRESULT CreateBrowse(dwCount, pdwAttrID, pOperator, vFilter, pphBrowser, ppErrors)
Description This function returns a pointer to an OPCHDA_BROWSER interface.

3.1.3. IOPCHDA_Browser

HRESULT GetEnum(dwBrowseType, ppIEnumString)
Description This function returns a pointer to an IENUM string pointer for a list of leaves,

branches, or item IDs, depending on the browse type requested.

HRESULT ChangeBrowsePosition(dwBrowseDirection, szString)
Description This function provides a way to move up or down relative to the current position, or

directly to a given position in a hierarchy.

HRESULT GetItemID (szNode, pszItemID)
Description This function provides a way to get an item identification.

HRESULT GetBranchPosition (pszBranchPos)
Description This function provides the current browse position in the hierarchy.

3.1.4. IOPCHDA_SyncRead

HRESULT ReadRaw (htStartTime, htEndTime, dwNumValues, bBounds, dwNumItems,

phServer, ppItemValues, ppErrors)
Description This function reads the values, qualities, and timestamps from the history database for

the specified time domain for one or more items in a group.

HRESULT ReadProcessed (htStartTime, htEndTime, ftResampleInterval, dwNumItems,

phServer, haAggregate, ppItemValues, ppErrors)
Description This function computes aggregate values, qualities, and timestamps from data in the

history database for the specified time domain for one or more items. This is an
optional method on the interface.

HRESULT ReadAtTime (dwNumTimeStamps, ftTimeStamps, dwNumItems, phServer,

ppItemValues, ppErrors)
Description This function reads the values and qualities from the history database for the specified

timestamps for one or more items. This is an optional method on the interface.

HRESULT ReadModified(htStartTime, htEndTime, dwNumValues, dwNumItems, phServer,

ppItemValues, ppErrors)
Description The purpose of this function is to read values from history that have been

modified/replaced. If ReadRaw, ReadProcessed, or ReadAtTime has returned a
quality of OPCHDA_EXTRADATA, indicating that there are values which have been
superseded, this function will allow you to see those values which were superseded.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

12

OPC Historical Data Access Custom Interface Specification 1.0

Only values that have been modified/replaced or deleted are read by this function. This
is an optional method on the interface.

HRESULT ReadAttribute (htStartTime, htEndTime, hServer, dwNumAttributes, pdwAttributeIDs,

ppAttributeValues, ppErrors)
Description This function reads the attribute values and timestamps from the history database for

the specified time domain for an item. If the current values for the attributes are
desired, htStartTime should be set to "NOW" and htEndTime should be NULL.

3.1.5. IOPCHDA_SyncUpdate (optional)

HRESULT QueryCapabilities(pCapabilities)
Description This function specifies which update methods the server supports. It is a required

method for all servers which support the OPCHDA SyncUpdate interface.

HRESULT Insert(dwNumItems, phServer, ftTimeStamps, vDataValues, pdwQualities, ppErrors)
Description This function inserts values and qualities into the history database at the specified

timestamps for one or more items. This is an optional method on the interface.

HRESULT Replace(dwNumItems, phServer, ftTimeStamps, vDataValues, pdwQualities,

ppErrors)
Description This function replaces the values and qualities in the history database at the specified

timestamps for one or more items. This is an optional method on the interface.

HRESULT InsertReplace (dwNumItems, phServer, ftTimeStamps, vDataValues, pdwQualities,

ppErrors)
Description This function will insert or replace the values and qualities in the history database for

the specified timestamps for one or more items. If the item has a value at the specified
timestamp, the new value and quality will replace the old one. If there is no value at
that timestamp, the function will insert the new data. This is an optional method on
the interface.

HRESULT DeleteRaw (htStartTime, htEndTime, dwNumItems, phServer, ppErrors)
Description This function deletes the values, qualities, and timestamps from the history database

for the specified time domain for one or more items in a group. This is an optional
method on the interface.

HRESULT DeleteAtTime (dwNumItems, phServer, ftTimeStamps, ppErrors)
Description This function deletes the values and qualities in the history database for the specified

timestamps for one or more items in a group. This is an optional method on the
interface.

3.1.6. IOPCHDA_SyncAnnotations (optional)

HRESULT QueryCapabilities(pCapabilities)
Description This function specifies which update methods the server supports. It is a required

method for all servers which support the OPCHDA SyncAnnotations interface.

HRESULT Read(htStartTime, htEndTime, dwNumItems, phServer, ppAnnotationValues,

ppErrors)
Description This function reads the annotations from the history database in the specified time

domain for the specified item IDs. This is a required method for all servers which
support the OPCHDA SyncAnnotations interface.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

13

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Insert(dwNumItems, phServer, ftTimeStamps, ppAnnotationValues, ppErrors)
Description This function inserts annotations into the history database. This is a required method

for all servers which support the OPCHDA SyncAnnotations interface. This is an
optional method on the interface.

3.1.7. IOPCHDA_AsyncRead (optional)

HRESULT ReadRaw (dwTransactionID, htStartTime, htEndTime, dwNumValues, bBounds,

dwNumItems, phServer, pdwCancelID, ppErrors)
Description This function reads the values, qualities, and timestamps from the history database for

the specified time domain for one or more items. The results are returned via the
client's IOPCHDA_DataCallback::OnReadComplete method.

HRESULT AdviseRaw(dwTransactionID, htStartTime, ftUpdateInterval, dwNumItems,

phServer, pdwCancelID, ppErrors)
Description This function reads the values, qualities, and timestamps from the history database

from the specified start time at the update interval for one or more items. The results
are returned via the client's IOPCHDA_DataCallback::OnDataChange method. This is
an optional method on the interface.

HRESULT ReadProcessed (dwTransactionID, htStartTime, htEndTime, ftResampleInterval,

dwNumItems, phServer, haAggregate, pdwCancelID, ppErrors)
Description This function computes aggregate values, qualities, and timestamps from data in the

history database for the specified time domain for one or more items. The results are
returned via the client's IOPCHDA_DataCallback::OnReadComplete method. This is
an optional method on the interface.

HRESULT AdviseProcessed (dwTransactionID, htStartTime, ftResampleInterval, dwNumItems,

phServer, haAggregate, dwNumIntervals, pdwCancelID, ppErrors)
Description This function computes the aggregate values, qualities, and timestamps from the

history database from the specified start time at the interval for one or more items.
The results are returned via the client's IOPCHDA_DataCallback::OnDataChange
method. This is an optional method on the interface.

HRESULT ReadAtTime (dwTransactionID, dwNumTimeStamps, ftTimeStamps, dwNumItems,

phServer, pdwCancelID, ppErrors)
Description This function reads the values and qualities from the history database for the specified

timestamps for one or more items in a group. The results are returned via the client's
IOPCHDA_DataCallback::OnReadComplete method. This is an optional method on
the interface.

HRESULT ReadModified (dwTransactionID, htStartTime, htEndTime, dwNumValues,

dwNumItems, phServer, pdwCancelID, ppErrors)
Description This function reads the values, qualities, timestamps, user ID, and timestamp of

modification from the history database for the specified time domain for one or more
items. The results are returned via the client's
IOPCHDA_DataCallback::OnReadModifiedComplete method. The purpose of this
function is to read values from history that have been modified/replaced. If ReadRaw,
ReadProcessed, or ReadAtTime has returned a quality of OPCHDA_EXTRADATA,
indicating that there are values which have been superseded, this function will allow
you to see those values which were superseded. Only values that have been
modified/replaced or deleted are read by this function. This is an optional method on
the interface.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

14

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT ReadAttribute (dwTransactionID, htStartTime, htEndTime, hServer,

dwNumAttributes, dwAttributeIDs, pdwCancelID, ppErrors)
Description This function reads the attribute values and timestamps from the history database for

the specified time domain for an item. The results are returned via the client's
IOPCHDA_DataCallback::OnReadAttributesComplete method. This is an optional
method on the interface.

HRESULT Cancel(dwCancelID)
Description This function cancels the outstanding operation. The actual implementation is server

specific, but the server will respond via the client's
IOPCHDA_DataCallback::OnCancelComplete method.

3.1.8. IOPCHDA_AsyncUpdate (optional)

HRESULT QueryCapabilities(pCapabilities)
Description This function specifies which update methods the server supports. It is a required

method for all servers which support the OPCHDA AsyncUpdate interface.

HRESULT Insert(dwTransactionID, dwNumItems, phServer, ftTimeStamps, vDataValues,

pdwQualities, pdwCancelID, ppErrors)
Description This function inserts values and qualities into the history database for the specified

timestamps for one or more items. The results are returned via the client's
IOPCHDA_DataCallback::OnUpdateComplete method. This is an optional method on
the interface.

HRESULT Replace (dwTransactionID, dwNumItems, phServer, ftTimeStamps, vDataValues,

pdwQualities, pdwCancelID, ppErrors)
Description This function replaces values and qualities in the history database at the specified

timestamps for one or more items. The results are returned via the client's
IOPCHDA_DataCallback::OnUpdateComplete method. This is an optional method on
the interface.

HRESULT InsertReplace(dwTransactionID, dwNumItems, phServer, ftTimeStamps,

vDataValues, pdwQualities, pdwCancelID, ppErrors)
Description This function inserts or replaces values and qualities at the specified timestamps for

one or more items. If the item has a value at the specified timestamp, the new value
and quality will replace the old one. If there is no value at that timestamp, the function
will insert the new data. The results are returned via the client's
IOPCHDA_DataCallback::OnUpdateComplete method. This is an optional method on
the interface.

HRESULT DeleteRaw (dwTransactionID, htStartTime, htEndTime, dwNumItems, phServer,

pdwCancelID, ppErrors)
Description This function deletes the values, qualities, and timestamps from the history database

for the specified time domain for one or more items. The results are returned via the
client's IOPCHDA_DataCallback::OnUpdateComplete method. This is an optional
method on the interface.

HRESULT DeleteAtTime (dwTransactionID, dwNumItems, phServer, ftTimeStamps,

pdwCancelID, ppErrors)
Description This function deletes the values and qualities in the history database for the specified

timestamps for one or more items. The results are returned via the client's
IOPCHDA_DataCallback::OnUpdateComplete method. This is an optional method on

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

15

OPC Historical Data Access Custom Interface Specification 1.0

the interface.

HRESULT Cancel(dwCancelID)
Description This function cancels the outstanding operation. The actual implementation is server

specific, but the server will respond via the client's
IOPCHDA_DataCallback::OnCancelComplete method.

3.1.9. IOPCHDA_AsyncAnnotations (optional)

HRESULT QueryCapabilities(pCapabilities)
Description This function specifies which update methods the server supports. It is a required

method for all servers which support the OPCHDA AsyncAnnotations interface.

HRESULT Read(dwTransactionID, htStartTime, htEndTime, dwNumItems, phServer,

pdwCancelID, ppErrors)
Description This function reads the annotations from the history database in the specified time

domain for the specified item IDs. This function is intended to read annotations
entered by users to document observations for a value at a specified timestamp. The
results are returned via the client's IOPCHDA_DataCallback::OnReadAnnotations
method.

HRESULT Insert(dwTransactionID, dwNumItems, phServer, ftTimeStamps, pAnnotationValues,

pdwCancelID, ppErrors)
Description This function inserts annotations into the history database. This function is intended to

insert annotations by users to document observations for a value at a specified
timestamp. The results are returned via the client's
IOPCHDA_DataCallback::OnInsertAnnotations method. This is an optional method
on the interface.

HRESULT Cancel(dwCancelID)
Description This function cancels the outstanding operation. The actual implementation is server

specific, but the server shall respond via the client's
IOPCHDA_DataCallback::OnCancelComplete method.

3.1.10. IOPCHDA_Playback (optional)

HRESULT ReadRawWithUpdate(dwTransactionID, htStartTime, htEndTime, dwNumValues,
ftUpdateDuration, ftUpdateInterval, dwNumItems, phServer, pdwCancelID, ppErrors)

Description This operation will initially retrieve data from the start time to the end time. After the
initial response it will periodically (at the ftUpdateInterval) respond with an amount of
data identified by ftUpdateDuration. The time of the last value returned in the initial
response is used as the start time for the first update. After that, the time of the last
value returned in an update is used as the start time for the next update.

HRESULT ReadProcessedWithUpdate(dwTransactionID, htStartTime, htEndTime,

ftResampleInterval, dwNumIntervals, ftUpdateInterval, dwNumItems, phServer,
haAggregate, pdwCancelID, ppErrors)

Description This operation will initially retrieve data from the start time to the end time. After the
initial response it will periodically (at the ftUpdateInterval) respond with a
dwNumIntervals amount of data divided into ftResampleInterval sized bins. The time
of the last value returned in the initial response is used as the start time for the first
update. After that, the time of the last value returned in an update is used as the start
time for the next update. This is an optional method on the interface.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

16

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Cancel(dwCancelID)
Description This function cancels the outstanding operation. The actual implementation is server

specific, but the server will respond via the OPCHDA_CancelComplete callback.

3.1.11. IConnectionPointContainer (required if any Async interface is supported)

HRESULT EnumConnectionPoints(ppEnum)
Description Create an enumerator for the Connection Points supported between the OPCHDA

server and the Client.

HRESULT FindConnectionPoint(riid, ppCP)
Description Find a particular connection point between the OPCHDA server and the Client.

3.1.12. IOPCHDA_DataCallback

HRESULT OnDataChange(dwTransactionID, hrStatus, dwNumItems, pItemValues, phrErrors)
Description This method is provided by the client to handle notifications from the OPCHDA server

resulting from calls to OPCHDA_AsyncRead::AdviseRaw and
OPCHDA_AsyncRead::AdviseProcessed.

HRESULT OnReadComplete(dwTransactionID, hrStatus, dwNumItems, pItemValues, phrErrors)
Description This method is provided by the client to handle returned data from

OPCHDA_AsyncRead::ReadRaw, OPCHDA_AsyncRead::ReadProcessed, and
OPCHDA_AsyncRead::ReadAtTime.

HRESULT OnReadModifiedComplete (dwTransactionID, hrStatus, dwNumItems, pItemValues,

phrErrors)
Description This method is provided by the client to handle returned data from

OPCHDA_AsyncRead::ReadModified.

HRESULT OnReadAttributesComplete(dwTransactionID, hrStatus, hClient, dwNumItems,

pAttributeValues, phrErrors)
Description This method is provided by the client to handle returned data from

OPCHDA_AsyncRead::ReadAttribute.

HRESULT OnReadAnnotations(dwTransactionID, hrStatus, dwNumItems, pAnnotationValues,

phrErrors)
Description This method is provided by the client to handle returned data from

OPCHDA_AsyncReadAnnotations::Read.

HRESULT OnInsertAnnotations (dwTransactionID, hrStatus, dwCount, phClients, phrErrors)
Description This method is provided by the client to handle notifications from the server on

completion of OPCHDA_AsyncAnnotations::Insert.

HRESULT OnPlayback (dwTransactionID, hrStatus, dwNumItems, ppItemValues, phrErrors)
Description This method is provided by the client to handle notifications from the OPCHDA server

resulting from calls to OPCHDA_Playback::ReadRawWithUpdate and
OPCHDA_Playback::ReadProcessedWithUpdate.

HRESULT OnUpdateComplete (dwTransactionID, hrStatus, dwCount, phClients, phrErrors)
Description This method is provided by the client to handle notifications from the server on

completion of OPCHDA_AsyncUpdate::Insert, OPCHDA_AsyncUpdate::Replace,

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

17

OPC Historical Data Access Custom Interface Specification 1.0

OPCHDA_AsyncUpdate::InsertReplace, OPCHDA_AsyncUpdate::DeleteRaw, and
OPCHDA_AsyncUpdate::DeleteAtTime.

HRESULT OnCancelComplete(dwCancelID)
Description This method is provided by the client to handle notifications from the server on

completion of Async Cancel.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

18

OPC Historical Data Access Custom Interface Specification 1.0

4. OPC-HDA Custom Interface
4.1. Overview of the OPC HDA Custom Interface
The OPC HDA custom interface objects include the following custom objects:

• OPCHDAServer

 IOPCHDA_SyncRead

 IOPCHDA_SyncUpdate

 IOPCHDA_SyncAnnotations

 IOPCHDA_AsyncRead

 IOPCHDA_AsyncUpdate

 IOPCHDA_AsyncAnnotations

 IOPCHDA_Playback

• OPCHDABrowser

 IOPCHDA_Browser

• OPCHDAClient

 IOPCHDA_DataCallback

The interfaces and behaviors of these objects are described in detail in this chapter. Developers of OPC
HDA servers are required to implement the OPC HDA objects by providing the functionality defined in
this chapter.

This chapter also references and defines expected behavior for the standard OLE interfaces. Interfaces that
OPC HDA servers and clients are required to implement when building OPC compliant components.

Also, standard and custom Enumerator objects are created, and interfaces to these objects are returned. In
general the enumerator objects and interfaces are described briefly since their behavior is well defined by
OLE.

The OPC specification follows the preferred approach that enumerators are created and returned from
methods on objects rather than through QueryInterface. The enumerators are as follows:

• Historical Data Address Space Enumerator - (see IOPCHDA_Browser::GetEnum)

Also you will note that in some cases lists of things are returned via enumerators and in other cases as
simple lists of items. Our choice depends on the expected number of items returned. ‘Large’ lists are best
returned through enumerators while ‘small’ lists are more easily and efficiently returned via explicit lists.

4.2. General Information
This section provides general information about the OPC HDA interfaces, and some background
information about how the designers of OPC expected these interfaces to be implemented and used.

4.2.1. Ownership of memory
Per the COM specification, clients must free all memory associated with ‘out’ or ‘in/out’ parameters.
This includes memory that is pointed to by elements within any structures. This is very important for
client writers to understand, otherwise they will experience memory leaks that are difficult to find.
See the IDL files to determine which parameters are out parameters. The recommended approach is
for a client to create a subroutine that is used for freeing each type of structure properly.

Independent of success/failure, the server must always return well-defined values for ‘out’ parameters.
Releasing the allocated resources is the client’s responsibility.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

19

OPC Historical Data Access Custom Interface Specification 1.0

Note: If the error result is any FAILED error such as E_OUTOFMEMORY , the OPC HDA server
shall return NULL for all `out' pointers (this is standard COM behavior). This rule also applies to the
error arrays (ppErrors) returned by many of the functions below. In general, a robust OPC client
should check each ‘out’ or ‘in/out’ pointer for NULL prior to freeing it.

In general , the guidelines for who has what rights and responsibilities are:

[in] something* means "The client will pass the address of a something that he allocated (by any
means he wishes) and the server may look at it but may not change it."

[out] something* means "The client will pass the address of a something that he allocated (by any
means he wishes) and the server may not look at it, the server can only write to it."

[in,out] something* means "The client will pass the address of a something that he allocated (by any
means he wishes) and the server may both look at and change it."

[in] something** is not used.

[out] something** means "The client will pass the address of a (something*), allocated by any means
he wishes, and the server will use CoTaskMemAlloc to allocate a new "something" and store its
address there."

[in,out] something** means "The client will allocate a "something" via CoTaskMemAlloc and pass the
address of a pointer to it. [The pointer variable can be allocated anywhere.] The server may free the
"something*" via CoTaskMemFree and allocate a new "something" via CoTaskMemAlloc. The server
will place the address of the allocated memory into the parameter and return it to the client."

4.2.2. Standard Interfaces
Per the COM specification, all methods must be implemented on each required interface.

Per the COM specification, any optional interfaces that are supported must have all functions within
that interface implemented, even if the implementation is only a stub implementation returning
E_NOTIMPL.

4.2.3. Null Strings and Null Pointers
Both of these terms are used below. They are NOT the same thing. A NULL Pointer is an invalid
pointer (0) which will cause an exception if used. A NULL String is a valid (non zero) pointer to a 1
character array where that character is a NULL (i.e. 0). If a NULL string is returned from a method as
an [out] parameter (or as an element of a structure) it must be freed, otherwise the memory containing
the NULL will be lost. Also note that a NULL pointer cannot be passed for an [in,string] argument due
to COM marshalling restrictions. In this case a pointer to a NULL string shall be passed to indicate an
omitted parameter.

4.2.4. Returned Arrays
You will note the syntax size_is(dwCount) in the IDL used in combination with pointers to pointers.
This indicates that the returned item is a pointer to an actual array of the indicated type, rather than a
pointer to an array of pointers to items of the indicated type. This simplifies marshaling , creation, and
access of the data by the server and client.

4.2.5. Asynchronous vs. Synchronous Interfaces
There are two ways for a client to obtain data from a server.

• It can perform a synchronous read (simple and reasonably efficient). This may be appropriate for
fairly simple clients that are reading relatively small amounts of data and where maximum
efficiency is not a concern. A client that operates in this way is willing to block and wait for the
results. When a large amount of data is requested this could require some time. This method is

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

20

OPC Historical Data Access Custom Interface Specification 1.0

appropriate for reports or other non-interactive reads, but would be very poor for an interactive
display.

• It can ‘subscribe’ to data using the Async methods, which is more complex but very efficient.
This is the recommended behavior for interactive clients because it will minimize display lockups.
The client would be free to process other interactions while waiting for the data to return.

4.2.6. Errors and return codes
The OPC specification describes interfaces and corresponding behavior that an OPC HDA server
implements, and an OPC client application depends on. A list of OPC Specific errors and return
codes is contained in the summary of OPC error codes section in this specification. For each method
described below a list of all possible OPC error codes as well as the most common OLE error codes is
included. It is likely that clients will encounter additional error codes such as RPC and Security
related codes in practice and they should be prepared to deal with them.

In some cases, it is also allowed for a server to return Vendor Specific error codes. Such codes can be
passed to GetErrorString method. This is discussed in more detail later.

In all cases ‘E’ error codes will indicate FAILED type errors and ‘S’ error codes will indicate at least
partial success.

4.2.7. IUnknown
The server must provide a standard IUnknown Interface. Since this is a well defined interface it is not
discussed in detail. See the OLE Programmer’s reference for additional information. This interface
must be provided, and all functions implemented as required by Microsoft.

4.3. IOPCCommon
This is an Required Interface

Other OPC Servers such as alarms and events share this interface design. It provides the ability to set
and query a LocaleID which would be in effect for the particular client/server session. That is, as with
a Group definition, the actions of one client do not affect any other clients.

A quick reference for this interface is provided below. A more detailed discussion can be found in the
OPC Common Definitions and Interfaces document.

HRESULT SetLocaleID (
 [in] LCID dwLcid
);

HRESULT GetLocaleID (
 [out] LCID *pdwLcid
);

HRESULT QueryAvailableLocaleIDs (
 [out] DWORD *pdwCount,
 [out, sizeis(, *pdwCount)] LCID **ppdwLcid
);

HRESULT GetErrorString(
 [in] HRESULT dwError,
 [out, string] LPWSTR *ppString
);

HRESULT SetClientName (

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

21

OPC Historical Data Access Custom Interface Specification 1.0

 [in, string] LPCWSTR szName
);

4.4. Synchronous Interfaces
Synchronous operations require the client software to wait until the server has fulfilled the request and
returned the data. Synchronous operations that may require significant time for the server to fulfill
have corresponding asynchronous operations that may be cancelled.

4.4.1. IOPCHDA_Server

This is an Required Interface

4.4.1.1. IOPCHDA_Server::GetItemAttributes

A Required Method

HRESULT GetItemAttributes(
[out] DWORD *pdwCount,
[out, size_is(,*pdwCount)] DWORD **ppdwAttrID,
[out, size_is(,*pdwCount),string] LPWSTR **ppszAttrName,
[out, size_is(,*pdwCount),string] LPWSTR **ppszAttrDesc,
[out, size_is(,*pdwCount)] VARTYPE
 **ppvtAttrDataType
);

Description

This function returns the item attributes supported by the server. The OPC defined attribute types are
defined in section 5.2. Vendor specific attributes also are supported. The vendor supplied attributes are
made available to allow the client to access and display vendor specific information. Attribute data
types are intended to allow query filtering when browsing item ids. If no attributes are supported by
the server, the function shall return NULL pointers.

Parameters Description

pdwCount The number of item attributes returned.
ppdwAttrID The attribute identification index number.
ppszAttrName The name of the attribute.
ppszAttrDesc A description of the attribute.
ppvtAttrDataType The variant data type of the attribute.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

22

OPC Historical Data Access Custom Interface Specification 1.0

4.4.1.2. IOPCHDA_Server::GetAggregates

A Required Method

HRESULT GetAggregates(
[out] DWORD *pdwCount,
[out, size_is(,*pdwCount)] DWORD **ppdwAggrID,
[out, size_is(,*pdwCount), string] LPWSTR
 **ppszAggrName,
[out, size_is(,*pdwCount), string] LPWSTR
 **ppszAggrDesc
);

Description

This function returns the list of aggregates supported by the server. The OPC defined aggregates are
defined in section 5.3.3. Vendor specific aggregates also are supported. The vendor supplied
aggregates are made available to allow the client to use all the functions available to their specific
server. If no aggregates are supported, the function shall return NULL pointers.

Parameters Description

pdwCount The number of aggregate descriptions returned.
ppdwAggrID The aggregate identification index number.
ppszAggrName The name of the aggregate.
ppszAggrDesc A description of the aggregate.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

4.4.1.3. IOPCHDA_Server::GetHistorianStatus

A Required Method

HRESULT GetHistorianStatus(
[out] OPCHDA_ SERVERSTATUS *pwStatus,
[out] FILETIME **pftCurrentTime,
[out] FILETIME **pftStartTime,
[out] WORD *pwMajorVersion,
[out] WORD *pwMinorVersion,
[out] WORD *pwBuildNumber,

 [out] DWORD *pdwMaxReturnValues,
[out,string] LPWSTR *ppszStatusString,
[out,string] LPWSTR *ppszVendorInfo
);

Description

This function returns the information on the current status of the server. The start time is optional and
may be returned as a NULL pointer.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

23

OPC Historical Data Access Custom Interface Specification 1.0

Parameters Description

pwStatus The current status of the historian. See values defined
below.

pftCurrentTime The current time at the historian location.
pftStartTime The time when the historian was last started.
pwMajorVersion The major version identification of the historian.
pwMinorVersion The minor version identification of the historian.
pwBuildNumber The build number identification of the historian
pdwMaxReturnValues The maximum number of values that can be returned

by the server on a per item basis. A value of 0 indicates
that the server forces no limit on the number of values
it can return.

ppszStatusString A string explaining historian status when the pwStatus
value is OPCHDA_INDETERMINATE.

ppszVendorInfo A vendor specific informational string.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

4.4.1.4. IOPCHDA_Server::GetItemHandles

A Required Method

HRESULT GetItemHandles(
[in] DWORD dwCount,
[in, size_is(dwCount)] LPWSTR *pszItemID,
[in, size_is(dwCount)] OPCHANDLE *phClient,
[out, size_is(,dwCount)] OPCHANDLE **pphServer,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

Given a list of ItemIDs and client handles, this function returns the server handles for each item. The
returned server handles must be used in all requests to read or update history. The supplied client
handles are included in the returns of all read and update requests.

Parameters Description

dwCount The number of item handles being requested.
pszItemID An array of null terminated strings that uniquely

identify the OPC HDA items.
phClient The handle of the client to be associated with the item.
pphServer The returned handle of the server used to refer to this

item.
ppErrors The status of association of the client to the server.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

24

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.
S_FALSE The function was partially successful. See the ppErrors

to determine success of individual associations.

ppError Codes

Return Code Description
S_OK The operation was successful.
OPC_E_BADRIGHTS Insufficient rights for this operation.
OPC_E_INVALIDITEMID The ItemId was specified incorrectly.
OPC_E_UNKNOWNITEMID The item does not exist in the server address space.
E_FAIL The association was unsuccessful.

4.4.1.5. IOPCHDA_Server::ReleaseItemHandles

A Required Method

HRESULT ReleaseItemHandles(
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE *phServer,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

This function releases associations between server handles and client handles for specific HDA items.

Parameters Description

dwCount The number of item handles being released.
phServer The server handles of the items to be released.
ppErrors The status of operations.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.
S_FALSE The function was partially successful. See the ppErrors

to determine success of individual association releases.

ppError Codes

Return Code Description
S_OK The operation was successful.
OPC_E_INVALIDHANDLE The server handle does not exist.
E_FAIL The release failed.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

25

OPC Historical Data Access Custom Interface Specification 1.0

4.4.1.6. IOPCHDA_Server::ValidateItemIDs

A Required Method

HRESULT ValidateItemIDs(
[in] DWORD dwCount,
[in, size_is(dwCount)] LPWSTR *pszItemID,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

This function validates that specific HDA item IDs are known to the server.

Parameters Description

dwCount The number of item handles being validated.
pszItemID An array of null terminated strings that uniquely

identify the OPC HDA items.
ppErrors The status of validation.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.
S_FALSE The function was partially successful. See the ppErrors

to determine success of individual validations.

ppError Codes

Return Code Description
S_OK The operation was successful.
OPC_E_BADRIGHTS Insufficient rights for this operation.
OPC_E_UNKNOWNITEMID The item does not exist in the server address space.
OPC_E_INVALIDITEMID The item ID specification is syntactically incorrect.
E_FAIL The validation was unsuccessful.

4.4.1.7. IOPCHDA_Server::CreateBrowse

A Required Method

HRESULT CreateBrowse(
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD *pdwAttrID,
[in, size_is(dwCount)] OPCHDA_OPERATORCODES
 *pOperator,
[in, size_is(dwCount)] VARIANT *vFilter,
[out] IOPCHDA_Browser **pphBrowser,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

This function returns a pointer to an OPCHDA_BROWSER interface. The filters will be applied to all
method calls to this instance of the browser. The server is expected to validate the filter arrays. The

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

26

OPC Historical Data Access Custom Interface Specification 1.0

server must support a single client having simultaneous access to multiple browse interfaces. Filtering
is optional behavior for a server. If a server does not support filtering, or only supports filtering on
some of the requested attributes, the server shall return an interface to a browser which is only filtered
on the accepted attributes. A server which does not support filtering shall return a pointer to an
unfiltered browser interface. Filter operations are additive. To successfully pass filter criteria, the item
must successfully satisfy all of the filter criteria.

Implementation of filtering and browsing is server specific, however it is anticipated that servers with
hierarchical name spaces may only apply filters to leaves, causing them to return branches with no
leaves which satisfy the criteria. It is anticipated that a client may create one browser to locate a
particular area of the hierarchy, obtain a fully qualified branch name using GetBranchPosition, then
pass that branch name to another browser which is using a different filter set.

Servers may optionally support wild cards for string filters. To represent a single character the “?”
shall be used. To represent multiple characters the “*” shall be used.

Parameters Description

dwCount The number of attribute IDs in the filter.
pdwAttrID The filter attribute IDs.
pOperator The filter operators .
vFilter The filter values.
pphBrowser The returned browser interface.
ppErrors The validity of the filtering inputs.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.
S_FALSE The function was partially successful. See the ppErrors

to determine success of individual filters. Note: a valid
browser interface pointer is still returned.

ppError Codes

Return Code Description
S_OK The operation was successful.
OPC_W_NOFILTER The server does not support this filter.
OPC_E_UNKNOWNATTRID The server does not support this attribute.
OPC_E_INVALIDDATATYP
E

The supplied value for the attribute is not a correct data
type.

E_INVALIDARG The supplied operator is invalid or unsupported with this
attribute.

E_FAIL The operation was unsuccessful.

Comments

A filter is defined by the three parameters pdwAttrID, pOperator and vFilter. The filter expression is
true if the relationship of the value of the attribute to the filter value matches the filter operator. If
multiple filter expressions are given, they must all be true for the item to be included.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

27

OPC Historical Data Access Custom Interface Specification 1.0

4.4.2. IOPCHDA_Browser

This is an Required Interface

4.4.2.1. IOPCHDA_Browser::GetEnum

A Required Method

HRESULT GetEnum(
[in] OPCHDA_ BROWSETYPE dwBrowseType,
[out] LPENUMSTRING **ppIEnumString
);

Description

This function returns a pointer to an IENUM string pointer for a list of leaves, branches, or item IDs,
depending on the browse type requested. Whether a branch is an item ID is undetermined and may be
server dependent. The members of the enum set will be determined by the position of the browser in
the server address space and the value of the filters when the browser interface was created. If no item
ids pass the filter criteria, the enum set is empty.

Parameters Description

dwBrowseType The type of browse to perform.

ppIEnumString Where to save the returned enumerator pointer. NULL
if the HRESULT is other than S_OK or S_FALSE.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE There is nothing to enumerate. However, an enumerator

is still returned and must be released.
E_FAIL The function was unsuccessful.

4.4.2.2. IOPCHDA_Browser::ChangeBrowsePosition

A Required Method

HRESULT ChangeBrowsePosition(
[in] OPCHDA_BROWSEDIRECTION
 dwBrowseDirection,
[in,string] LPCWSTR szString
);

Description

This function provides a way to move up or down relative to the current position, or directly to a given
position in a hierarchy.

Parameters Description

dwBrowseDirection The direction to move the browse interface.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

28

OPC Historical Data Access Custom Interface Specification 1.0

szString Indicates the branch name when moving down the

hierarchy and the full path to a branch when moving
directly to a position. Note: this parameter is ignored
when moving up the hierarchy and should be set to an
empty string.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

4.4.2.3. IOPCHDA_Browser::GetItemID

A Required Method

HRESULT GetItemID (
[in,string] LPCWSTR szNode,
[out,string] LPWSTR *pszItemID
);

Description

This function provides a way to get a fully qualified item identification. This is required since the
browsing functions return only the components or tokens that make up an ITEMID and do not return
the delimiters used to separate those tokens.

Parameters Description

szNode An item name from the Enum set returned by GetEnum
as an OPCHDA_LEAF or OPCHDA_ITEMID

pszItemID A pointer to the string which contains the fully
qualified item ID.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

Comments

This function returns the fully qualified ItemID for the OPCHDA_LEAF or OPCHDA_ITEMID in the
Enum set obtained from the GetEnum method for the current browse position. This is an ID that can
be passed to IOPCHDA_Server::GetItemHandles.

4.4.2.4. IOPCHDA_Browser::GetBranchPosition

A Required Method

HRESULT GetBranchPosition (
 [out,string] LPWSTR *pszBranchPos
);

Description

This function provides the current browse position in the hierarchy.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

29

OPC Historical Data Access Custom Interface Specification 1.0

Parameters Description

pszBranchPos A pointer to a string which contains the fully qualified
path to the current BRANCH or LEAF (ItemID)
browse position.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

Comments

The fully qualified path obtained from this method can be used to set the browse position with the
ChangeBrowsePosition method using the OPCHDA_BROWSE_DIRECT flag.

4.4.3. IOPCHDA_SyncRead

This is an Required Interface

4.4.3.1. IOPCHDA_SyncRead::ReadRaw

A Required Method

HRESULT ReadRaw (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] BOOL bBounds,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the values, qualities, and timestamps from the history database for the specified
time domain for one or more items. When bBounds is TRUE, the bounding values for the time domain
are returned. This function is intended for use by clients wanting the actual data saved within the
historian. The actual data may be compressed or may be all data collected for the item depending on
the historian and the storage rules invoked when the item values were saved. The optional bounding
values are provided to allow clients to interpolate values for the start and end times when trending the
actual data on a display.

Parameters Description

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

30

OPC Historical Data Access Custom Interface Specification 1.0

dwNumValues The maximum number of values returned for any item
over the time range. If only one time is specified, this
number specifies the extent of the time range.

bBounds True if bounding values should be returned.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
ppItemValues Array of structures in which the item values are

returned. The order of the structures in the array shall
be the same as the order of the server item handles.

ppErrors Array of HRESULTs indicating the success of the
individual item reads. The errors correspond to the
handles passed in phServer. This indicates whether the
read succeeded in obtaining a defined value, quality
and timestamp. NOTE that any FAILED error code
indicates that the corresponding OPCHDA_ITEM
struct is undefined.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened
OPC_E_MAXEXCEEDED The maximum number of values requested

(dwNumValues) is greater than the server limit
of maximum values returned.

E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_MOREDATA More data is available in the time range beyond the number

of values requested.
OPC_S_NODATA No data was found in the specified time range.
E_FAIL The item read was unsuccessful.

Comments

The time domain of the request is defined by htStartTime, htEndTime, and dwNumValues; at least two
of these must be specified. If htEndTime is less than htStartTime, or htEndTime and dwNumValues
alone are specified, the data will be returned in reverse order, with later data coming first. If all three
are specified, the call shall return up to dwNumValues results going from htStartTime to htEndTime,
in either ascending or descending order depending on the relative values of htStartTime and
htEndTime. If dwNumValues is 0, then all the values in the range are returned.

If either htStartTime or htEndTime is given in string (relative) format, the absolute time of the
OPCHDA_TIME structure (ftTime) shall be set to the FILETIME which the relative time was
translated to by the server.

If more than dwNumValues results exist within that time range, the ppErrors entry for that ItemID
shall be OPC_S_MOREDATA. When OPC_S_MOREDATA is returned, clients wanting the next
dwNumValues values should call ReadRaw again with the timestamp of the oldest value returned for

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

31

OPC Historical Data Access Custom Interface Specification 1.0

the item as the new htStartTime and the original value of htEndTime unchanged (reverse htStartTime
and htEndTime if reverse order is needed). Note that the second call will return a duplicate of the last
value in the previous call.

When bounding values are requested and no bounding value is found, the value returned in the
ppItemValues will have a quality of OPCHDA_NODATA. How far back or forward to look in
history for bounding values is server dependent.

If bounding values are requested and a non-zero dwNumValues was specified, any bounding values
returned are included in the dwNumValues count.

For an interval in which no data exists, OPC_S_NODATA if bounding values are not requested. If
bounding values are requested, the error return is S_OK and the bounding values are returned.

4.4.3.2. IOPCHDA_SyncRead::ReadProcessed

This method was changed between v1.0 and v1.1 of the standard, to pass the haAggregate as a
DWORD rather than an ENUM, to allow vendors to specify their own aggregates. Servers and
clients build with v1.0 of the standard will work with those built with v1.1, but v1.0 clients may not
be compatible with v1.1 servers which return vendor-specified aggregates.

An Optional Method

HRESULT ReadProcessed (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD * haAggregate,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function computes aggregate values, qualities, and timestamps from data in the history database
for the specified time domain for one or more items. The time domain is divided into subintervals of
duration ftResampleInterval. The specified haAggregate is calculated for each subinterval beginning
with htStartTime by using the data within the next ftResampleInterval.

This function is intended to provide values calculated with respect to the resample interval. For
example, this function can provide hourly statistics such as Maximum, Minimum, Average, etc. for
each item during the specified time domain when ftResampleInterval is 1 hour.

Parameters Description

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

ftResampleInterval Interval between returned values.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
haAggregate The calculation to be performed on the raw data to

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

32

OPC Historical Data Access Custom Interface Specification 1.0

create the values to be returned.
ppItemValues Array of structures in which the item values are

returned. The order of the structures in the array shall
be the same as the order of the server item handles.

ppErrors Array of HRESULTs indicating the success of the
individual item reads. The errors correspond to the
handles passed in phServer. This indicates whether the
read succeeded in obtaining defined values, qualities
and timestamps. NOTE any FAILED error code
indicates that the contents of the corresponding
OPCHDA_ITEM structure are UNDEFINED.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened
OPC_E_MAXEXCEEDED The maximum number of values returnable by

the server was exceeded. The resample
interval is too small for the size of the time
domain.

E_INVALIDARG An Invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The Item was read successfully.
OPC_S_NODATA No data was found in the specified time range.
OPC_S_EXTRADATA There is more data available than was returned. (Used for

MinimumActualTime and MaximumActualTime when
there is more than one timestamp for the value.)

OPC_E_NOT_AVAIL The requested aggregate is not available from the provided
item.

OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.
E_FAIL The Item read was unsuccessful.

Comments

The domain of the request is defined by htStartTime, htEndTime, and htResampleInterval. If
htStartTime or htEndTime is given in string (relative) format, the value returned shall be the
FILETIME to which that value was translated by the server. All three must be specified. If htEndTime
is less than htStartTime, the data shall be returned in reverse order, with later data coming first.

For MinimumActualTime and MaximumActualTime, if more than one instance of the value exists
within a subinterval, which instance (time stamp) of the value returned is server dependent. In any
case, the server may set the OPCHDA_EXTRADATA quality flag to let the caller know that there are
other timestamps with that value.

To obtain multiple aggregates for the same item, include the server item handle in the list of items for
each desired aggregate.

If htResampleInterval is 0, the server shall create one aggregate value for the entire time range. This
allows aggregates over large periods of time.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

33

David Pierce
 Here it would be nice if the historian could let the caller know that there are more values. I suggest using the quality OPC_EXTRADATA to indicate that there are additional optima.YES

OPC Historical Data Access Custom Interface Specification 1.0

The timestamp returned with the aggregate shall be the time at the beginning of the interval, except
where the aggregate specifies a different value. Also, the quality returned with the aggregate shall be
GOOD (see the OPC Data Access Standard) if all values upon which the aggregate is based have a
quality of GOOD. If any of those values have any other quality, the quality of the aggregate shall be
Sub-Normal (0x010110xx).

4.4.3.3. IOPCHDA_SyncRead::ReadAtTime

An Optional Method

HRESULT ReadAtTime (
[in] DWORD dwNumTimeStamps,
[in, size_is(dwNumTimeStamps)] FILETIME *ftTimeStamps,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the values and qualities from the history database for the specified timestamps for
one or more items. This function is intended to provide values to correlate with other values with a
known timestamp. For example, the values of sensors when lab samples were collected.

Parameters Description

dwNumTimeStamps The number of timestamps specified.
ftTimeStamps The timestamps for the requested data.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
ppItemValues Array of structures in which the item values are

returned. The order of the structures in the array shall
be the same as the order of the server item handles.

ppErrors Array of HRESULTs indicating the success of the
individual item reads. The errors correspond to the
handles passed in phServer. This indicates whether the
read succeeded in obtaining a defined value, quality
and timestamp. NOTE that any FAILED error code
indicates that the corresponding OPCHDA_ITEM
struct is undefined.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_INVALIDARG An Invalid parameter was passed.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

34

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.
E_FAIL The item read was unsuccessful.

Comments

The order of the values and qualities returned shall match the order of the time stamps supplied in the
request.

When no value exists for a specified timestamp, a value shall be interpolated from the surrounding
values to represent the value at the specified timestamp.

4.4.3.4. IOPCHDA_SyncRead::ReadModified

An Optional Method

HRESULT ReadModified(
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_MODIFIEDITEM
 ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the values, qualities, timestamps, user ID, and timestamp of the modification from
the history database for the specified time domain for one or more items.

The purpose of this function is to read values from history that have been modified/replaced. If
ReadRaw, ReadProcessed, or ReadAtTime has returned a quality of OPCHDA_EXTRADATA,
indicating that there are values which have been superseded, this function reads those values which
were superseded. Only values that have been modified/replaced or deleted are read by this function.

Parameters Description

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

dwNumValues The maximum number of values returned for any item
over the time range. If only one time is specified, this
number specifies the extent of the time range.

dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
ppItemValues Array of structures in which the item values are

returned. The order of the structures in the array shall
be the same as the order of the server item handles.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

35

OPC Historical Data Access Custom Interface Specification 1.0

ppErrors Array of HRESULTs indicating the success of the
individual item reads. The errors correspond to the
handles passed in phServer. This indicates whether the
read succeeded in obtaining a defined value, quality
and time stamp. NOTE that any FAILED error code
indicates that the corresponding
OPCHDA_MODIFIEDITEM struct is undefined.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_INVALIDARG An Invalid parameter was passed.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_MOREDATA More data is available in the time range beyond the number

of values requested.
OPC_S_NODATA No data was found in the specified time range.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The item read was unsuccessful.

Comments

The domain of the request is defined by htStartTime, htEndTime, and dwNumValues; at least two of
these must be specified. If htEndTime is less than htStartTime, or htEndTime and dwNumValues
alone are specified, the data shall be returned in reverse order, with later data coming first. If all three
are specified, the call shall return up to dwNumValues results going from StartTime to EndTime, in
either ascending or descending order depending on the relative values of StartTime and EndTime. If
more than dwNumValues results exist within that time range, the ppErrors entry for that ItemID shall
be OPC_S_MOREDATA. If dwNumValues is 0, then all the values in the range are returned.

If a value has been modified multiple times, all values for the time are returned. This means that a
timestamp can appear in the array more than once. The order of the returned values with the same
timestamp should be from most recent to oldest modified value. It is server dependent whether
multiple modifications are kept or only the most recent.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

36

OPC Historical Data Access Custom Interface Specification 1.0

4.4.3.5. IOPCHDA_SyncRead::ReadAttribute

A Required Method

HRESULT ReadAttribute (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] OPCHANDLE hServer,
[in] DWORD dwNumAttributes,
[in, size_is(dwNumAttributes)] DWORD *pdwAttributeIDs,
[out, size_is(,dwNumAttributes)] OPCHDA_ATTRIBUTE
 ** ppAttributeValues,
[out, size_is(,dwNumAttributes)] HRESULT ** ppErrors
);

Description

This function reads the attribute values and timestamps from the history database for the specified time
domain for an item. If the current values for the attributes are desired, htStartTime shall be set to
"NOW" and htEndTime shall be NULL.

This function is intended to be used to retrieve attributes that have changed to correlate the values of
these attributes with the values of their data. For example, the recalibration of a sensor may have
required the normal maximum and minimum attributes to be changed.

Parameters Description

htStartTime The beginning of the attribute read period. Note: the
time structure is allocated and freed by the client.

htEndTime The end of the attribute read period. Note: the time
structure is allocated and freed by the client.

hServer The server item handle for the item to be read.
dwNumAttributes The number of attributes to be read.
pdwAttributeIDs The list of attribute IDs to be read.
ppAttributeValues Array of structures in which the item attribute values

are returned. The order of the structures in the array
shall be the same as the order of attribute IDs.

ppErrors Array of HRESULTs indicating the success of the
individual attribute reads. The errors correspond to the
attribute IDs passed in dwAttributeIDs. This indicates
whether the read succeeded in obtaining a defined
value for the requested attribute. NOTE any FAILED
error code indicates that the corresponding attribute
value is UNDEFINED.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened.
OPC_E_INVALIDHANDLE The handle is invalid.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

37

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The attribute was read successfully.
OPC_E_BADRIGHTS The attribute is not readable
OPC_E_INVALIDATTRID The attribute ID is not valid.
E_FAIL The attribute read was unsuccessful.
OPC_S_CURRENTVALUE No history available for attribute.

Comments

If the only attribute values available for the item are the current values, these shall be returned and the
ppError set to OPC_S_CURRENTVALUE.

Except for the case where current values are requested (htStartTime = NOW, htEndTime = NULL),
the server shall always return a beginning bounding value. Thus, if the client requests attribute values
for Jan1, 1997 to October 1, 1997, the server shall return a value for the attribute on Jan 1, 1997, rather
than the first value returned being the first new value for the attribute after Jan 1, 1997. Likewise, the
timestamp for that first value shall be Jan 1, 1997, regardless of when the attribute actually took that
value. All other timestamps shall be for the time when the value of the attribute changed.

4.4.4. IOPCHDA_SyncUpdate

This is an Optional Interface

4.4.4.1. IOPCHDA_SyncUpdate::QueryCapabilities

A Required Method

HRESULT QueryCapabilities(
[out] OPCHDA_UPDATECABILITIES *pCapabilities
);

Description

This function specifies the update methods that the server supports.

Parameters Description

pCapabilities The methods supported by the interface.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_INVALIDARG An invalid parameter was passed.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

38

OPC Historical Data Access Custom Interface Specification 1.0

4.4.4.2. IOPCHDA_SyncUpdate::Insert

An Optional Method

HRESULT Insert(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts values and qualities into the history database at the specified timestamps for one
or more items. If a value exists at the specified timestamp, the new value shall not be inserted; instead
ppErrors shall indicate an error.

This function is intended to insert new values at the specified timestamps; e.g., the insertion of lab data
to reflect the time of data collection.

Parameters Description

dwNumItems The number of items to be inserted.
phServer The list of server item handles for the items to be

inserted.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the new item values.
pdwQualities Array of the quality flags of the new values.
ppErrors Array of HRESULTs indicating the success of the

individual item. The errors correspond to the handles
passed in phServer. This indicates whether the insert
succeeded.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

39

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was inserted successfully.
OPC_E_BADRIGHTS The client has no permission to insert the item.
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_E_DATAEXISTS Unable to insert – data already present.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The Item update was unsuccessful.

Comments

The phServer, ftTimeStamps, vValues and pdwQualities are arrays of size numItems. To insert a
value for a number of different items at a single time, then ftTimeStamp array would have the same
time for each item. To insert a stream of values, timestamps and qualities for a single item, set the size
of the item array to the number of values to be inserted and put the same ItemID in each element.

4.4.4.3. IOPCHDA_ SyncUpdate::Replace

An Optional Method

HRESULT Replace(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function replaces the values and qualities in the history database at the specified timestamps for
one or more items. If no value exists at the specified timestamp, the new value shall not be inserted;
instead ppErrors shall indicate an error.

This function is intended to replace existing values at the specified timestamp; e.g., correct lab data
that was improperly processed, but inserted into the history database.

Parameters Description

dwNumItems The number of items to be replaced.
phServer The list of server item handles for the items to be

replaced.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the new item values.
pdwQualities Array of the quality flags of the new values.
ppErrors Array of HRESULTs indicating the success of the

individual item. The errors correspond to the handles
passed in phServer. This indicates whether the edit
succeeded in replacing a defined value, quality and
timestamp.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

40

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was updated successfully.
OPC_E_BADRIGHTS The item is not editable.
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_E_NODATAEXISTS Unable to replace – no data exists.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The Item update was unsuccessful.

Comments

The phServer, ftTimeStamps, vValues and pdwQualities are arrays of size numItems. To replace the
values for a number of different items at a single time, then ftTimeStamp array would have the same
time for each item. To replace a stream of values, timestamps and qualities for a single item, set the
size of the item array to the number of values to be replaced and put the same ItemID in each element.

4.4.4.4. IOPCHDA_ SyncUpdate::InsertReplace

An Optional Method

HRESULT InsertReplace (
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts or replaces values and qualities in the history database for the specified
timestamps for one or more items. If the item has a value at the specified timestamp, the new value
and quality will replace the old one. If there is no value at that timestamp, the function will insert the
new data. The function runs to completion before returning.

This function is intended to unconditionally insert/replace values and qualities; e.g., correction of
values for bad sensors.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

41

OPC Historical Data Access Custom Interface Specification 1.0

Parameters Description

dwNumItems The number of items to be edited.
phServer The list of server item handles for the items to be

edited.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the new item values.
pdwQualities Array of the quality flags of the new values.
ppErrors Array of HRESULTs indicating the success of the

individual item. The errors correspond to the handles
passed in phServer. This indicates whether the edit
succeeded in inserting/replacing a defined value,
quality and timestamp.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was updated successfully.
OPC_E_BADRIGHTS The item is not editable.
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_INSERTED The requested insert occurred.
OPC_S_REPLACED The requested replace occurred.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The Item update was unsuccessful.

Comments

The phServer, ftTimeStamps, vValues and pdwQualities are arrays of size numItems. To set values
and qualities for a number of different items at a single time, then ftTimeStamp array would have the
same time for each item. To set a stream of values, timestamps and qualities for a single item, set the
size of the item array to the number of values to be inserted/replaced and put the same ItemID in each
element.

S_OK as a ppError return code for an individual value is allowed when the HDA server is unable to
say whether there was already a value at that timestamp. If the HDA server can determine whether the
new value replaces a value that was already there, it should use OPC_S_INSERTED or
OPC_S_REPLACED to return that information.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

42

OPC Historical Data Access Custom Interface Specification 1.0

4.4.4.5. IOPCHDA_ SyncUpdate::DeleteRaw

An Optional Method

HRESULT DeleteRaw (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

Description

This function deletes the values, qualities, and timestamps from the history database for the specified
time domain for one or more items.

This function is intended to be used to delete data that has been accidentally entered into the history
database; e.g., deletion of data from a source with incorrect timestamps.

Parameters Description

htStartTime The beginning of the history period to be deleted.
Note: the time structure is allocated and freed by the
client.

htEndTime The end of the history period to be deleted. Note: the
time structure is allocated and freed by the client.

dwNumItems The number of items to be deleted
phServer The list of server item handles for the items to be

deleted.
ppErrors Array of HRESULTs indicating the success of the

individual item deletes. The errors correspond to the
handles passed in phServer. This indicates whether the
delete succeeded in removing the specified items.
NOTE: any FAILED error code indicates that the
corresponding item was not completely deleted.

HRESULT Return Codes

Return Code Description
S_OK The item values were deleted successfully.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

43

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was deleted successfully.
OPC_E_BADRIGHTS The item values cannot be deleted
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_NODATA No values to delete for the item in the specified time range.
E_FAIL The item delete was unsuccessful.

Comments

If no data is found in the time range for a particular item, a success status of S_FALSE is returned and
the error code for that item is OPC_S_NODATA.

4.4.4.6. IOPCHDA_ SyncUpdate::DeleteAtTime

An Optional Method

HRESULT DeleteAtTime (
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

Description

This function deletes the values and qualities in the history database for the specified timestamps for
one or more items.

This function is intended to be used to delete specific data from the history database; e.g., lab data that
is incorrect and cannot be correctly reproduced.

Parameters Description

dwNumItems The number of items to be deleted.
phServer The list of server item handles for the items to be

deleted.
ftTimeStamps The timestamps for the data to be deleted.
ppErrors Array of HRESULTs indicating the success of the

individual item deletes. The errors correspond to the
timestamps passed in phServer.

HRESULT Return Codes

Return Code Description
S_OK The item values were deleted successfully.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

44

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was deleted successfully.
OPC_E_BADRIGHTS The item values cannot be deleted.
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_NODATA No values matching times given to delete.
E_FAIL The item delete was unsuccessful.

4.4.5. IOPCHDA_SyncAnnotations

This is an Optional Interface

4.4.5.1. IOPCHDA_SyncAnnotations::QueryCapabilities

A Required Method

HRESULT QueryCapabilities(
[out] OPCHDA_ANNOTATIONCAPABILITIES *pCapabilities
);

Description

This function specifies which update methods the server supports. It is a required method for all
servers which support the OPCHDA SyncAnnotations interface.

Parameters Description

pCapabilities The methods supported by the interface.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

4.4.5.2. IOPCHDA_SyncAnnotations::Read

A Required Method

HRESULT Read(
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_ANNOTATION
 ** ppAnnotationValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the annotations from the history database in the specified time domain for the
specified item IDs.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

45

OPC Historical Data Access Custom Interface Specification 1.0

This function is intended to read annotations for an item at specified timestamps.

Parameters Description

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

dwNumItems The number of annotation items to be read.
phServer The list of server item handles for the annotation items

to be read.
ppAnnotationValues Array of structures in which the annotation values are

returned. The order of the structures in the array shall
be the same as the order of server item handles.

ppErrors Array of HRESULTs indicating the success of the
individual annotation reads. The errors correspond to
the handles passed in phServer. This indicates whether
the read succeeded in obtaining a defined annotation
item. NOTE any FAILED error code indicates that the
corresponding Annotation structure is undefined.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.
OPC_S_NODATA No data was found in the specified time range.
E_FAIL The item read was unsuccessful.

Comments

The time domain of the request is defined by htStartTime and htEndTime. If htEndTime is less than
htStartTime the data shall be returned in reverse order, with later data coming first.

If either htStartTime or htEndTime is given in string (relative) format, the absolute time of the
OPCHDA_TIME structure (ftTime) shall be set to the FILETIME which the relative time was
translated to by the server.

OPC_S_NODATA is returned only if no annotations exist over the time domain.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

46

OPC Historical Data Access Custom Interface Specification 1.0

4.4.5.3. IOPCHDA_SyncAnnotations:: Insert

An Optional Method

HRESULT Insert(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] OPCHDA_ANNOTATION
 *pAnnotationValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts annotations into the history database.

This function is intended to insert annotations by users to document observations for a value at a
specified timestamp.

Parameters Description

dwNumItems The number of annotation items to be inserted.
phServer The list of server item handles for the annotation items

to be inserted.
ftTimeStamps Array of time stamps for the annotations to be inserted.
pAnnotationValues Array of structures containing the annotation values to

be inserted.
ppErrors Array of HRESULTs indicating the success of the

individual annotation inserts. The errors correspond to
the handles passed in phServer.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The annotation was inserted successfully.
OPC_E_BADRIGHTS The annotation is not writable.
OPC_E_INVALIDHANDLE The handle is invalid.
E_FAIL The item insert was unsuccessful.

4.5. Asynchronous Interfaces

Asynchronous operations allow a client to send a request to a server without waiting for the server to
fill the request and return the data. Each operation has an associated transaction ID (created by the
client) which is returned with the data during the callback to the client. Asynchronous methods for

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

47

OPC Historical Data Access Custom Interface Specification 1.0

OPC HDA servers are implemented using IConnectionPoint. This allows the client to establish
different callbacks to handle different types of data transfers. While there is some information given
on IConnectionPoint later in this document, it is advisable to read the Microsoft documentation.

It is anticipated that some servers will not support all of the asynchronous interfaces specified here.
However, all servers must support IConnectPointContainer, and any server which supports any
asynchronous interface must support the IOPCHDA_DataCallback ConnectionPoint. If a server does
not support a specific interface, it need not implement the means to send a callback to the matching
callback routine in the client's IOPCHDA_DataCallback object.

The client provides a TransactionID to differentiate one call from another, if it needs to do so. Since
the response to an async call can actually arrive before the call completes, the client should store this
TransactionID before making the call, so the callback routine will have access to the TransactionID.
Conversely, the CancelID is generated by the server, and is used to cancel async requests if the client
wishes to do so.

4.5.1. IOPCHDA_AsyncRead

This is an Optional Interface

4.5.1.1. IOPCHDA_AsyncRead::ReadRaw

A Required Method

HRESULT ReadRaw (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] BOOL bBounds,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors);

Description

This function reads the values, qualities, and timestamps from the history database for the specified
time domain for one or more items. When bBounds is TRUE, the bounding values for the time domain
are returned. This function is intended for use by clients wanting the actual data saved within the
historian. The actual data may be compressed or may be all data collected for the item depending on
the historian and the storage rules invoked when the item values were saved. The optional bounding
values are provided to allow clients to interpolate values for the start and end times when trending the
actual data on a display.

The results are returned via the client's IOPCHDA_DataCallback::OnReadComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

48

OPC Historical Data Access Custom Interface Specification 1.0

structure is allocated and freed by the client.
dwNumValues The maximum number of values returned for any item

over the time range. If only one time is specified, this
number specifies the extent of the time range.

bBounds True if bounding values should be returned.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened.
OPC_E_MAXEXCEEDED The maximum number of values requested

(dwNumValues) is greater than the server limit
of maximum values returned.

E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The time domain of the request is defined by htStartTime and htEndTime. If htEndTime is less than
htStartTime, the data shall be returned in reverse order, with later data coming first. Unlike the
synchronous method, if dwNumValues is non-zero, the function continues sending data in blocks of
size dwNumValues until all requested data has been sent. The CancelID can be used to cancel the
request.

If either htStartTime or htEndTime is given in string (relative) format, the absolute time of the
OPCHDA_TIME structure (ftTime) shall be set to the FILETIME which the relative time was
translated to by the server.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

49

OPC Historical Data Access Custom Interface Specification 1.0

4.5.1.2. IOPCHDA_AsyncRead::AdviseRaw

An Optional Method

HRESULT AdviseRaw(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the values, qualities, and timestamps from the history database from the specified
start time at the update interval for one or more items.

This function is intended to be used to update the client software with new data as it becomes
available; e.g., update a trend with new data on a periodic basis.

The results are returned via the client's IOPCHDA_DataCallback::OnDataChange method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

ftUpdateInterval Update interval to send new data
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

50

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was read successfully.
E_INVALIDARG An Invalid parameter was passed.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The request will be for all data from the htStartTime into the future, as it is collected, reported at the
rate specified by the ftUpdateInterval. Reporting will continue until the request is canceled. Caution
should be used in specifying start times prior to the present, as data which is already available will be
returned unthrottled, with ftUpdateInterval worth of data in each response. Once all data which has
already been collected has been sent, new data will be sent for every ftUpdateInterval.

If there is no new data, the server shall still send a response, with a zero count. This way a client can
be sure that the interval has been processed.

This function uses the ftUpdateInterval to throttle the rate of data return.

No annotations will be identified in an advise.

4.5.1.3. IOPCHDA_AsyncRead::ReadProcessed

This method was changed between v1.0 and v1.1 of the standard, to pass the haAggregate as a
DWORD rather than an ENUM, to allow vendors to specify their own aggregates. Servers and
clients build with v1.0 of the standard will work with those built with v1.1, but v1.0 clients may not
be compatible with v1.1 servers which return vendor-specified aggregates.

An Optional Method

HRESULT ReadProcessed (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD * haAggregate,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function computes aggregate values, qualities, and timestamps from data in the history database
for the specified time domain for one or more items. The time domain is divided into subintervals of
duration ftResampleInterval. The specified haAggregate is calculated for each subinterval beginning
with htStartTime by using the data within the next ftResampleInterval.

This function is intended to provide values calculated with respect to the resample interval. For
example, this function can provide hourly statistics such as Maximum, Minimum, Average, et. al. for
each item during the specified time domain when ftResampleInterval is 1 hour.

The results are returned via the client's IOPCHDA_DataCallback::OnReadComplete method.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

51

OPC Historical Data Access Custom Interface Specification 1.0

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

ftResampleInterval Interval between returned values.
dwNumItems The number of items to be read.
phServer The list item handles for the items to be read from the

server.
haAggregate The list of aggregate values to be returned.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened.
OPC_E_MAXEXCEEDED The maximum number of values returnable by

the server was exceeded.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The domain of the request is defined by htStartTime, htEndTime, and htResampleInterval. If
htStartTime or htEndTime is given in string (relative) format, the value returned shall be the
FILETIME to which that value was translated by the server. All three must be specified. If htEndTime
is less than htStartTime, the data shall be returned in reverse order, with later data coming first.

For MinimumActualTime and MaximumActualTime, if more than one instance of the value exists
within a subinterval, which instance (time stamp) of the value is returned is server dependent. In any
case, the server may set the OPCHDA_EXTRADATA quality flag to let the caller know that there are
other timestamps with that value.

If htResampleInterval is 0, the server shall create one aggregate value for the entire time range. This
allows aggregates over large periods of time.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

52

OPC Historical Data Access Custom Interface Specification 1.0

4.5.1.4. IOPCHDA_AsyncRead::AdviseProcessed

This method was changed between v1.0 and v1.1 of the standard, to pass the haAggregate as a
DWORD rather than an ENUM, to allow vendors to specify their own aggregates. Servers and
clients build with v1.0 of the standard will work with those built with v1.1, but v1.0 clients may not
be compatible with v1.1 servers which return vendor-specified aggregates.

An Optional Method

HRESULT AdviseProcessed (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD * haAggregate,
[in] DWORD dwNumIntervals,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function computes the aggregate values, qualities, and timestamps from the history database from
the specified start time at the interval for one or more items.

This function is intended to be used to update the client software with new data as it becomes
available; e.g., update a trend with new data on a periodic basis.

The results are returned via the client's IOPCHDA_DataCallback::OnDataChange method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history to be read. Note: the time
structure is allocated and freed by the client.

ftResampleInterval Interval between returned values.
dwNumItems The number of items to be read.
phServer The list server item handles for the items to be read.
haAggregate The list of aggregate values to be returned.
dwNumIntervals Number of resample intervals between updates.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

53

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The request will be for all data from the htStartTime into the future, as it is collected, reported at the
rate specified by: (dwNumIntervals* ftResampleInterval). The ftResampleInterval determines the
subintervals to which the specified functions will be applied. Beginning with htStartTime and
selecting the data within the next ftResampleInterval, the values specified by haAggregate will be
determined for each subinterval. Reporting shall continue until the request is canceled. Caution
should be used in specifying start times prior to the present, as data which is already available will be
returned unthrottled, with dwNumIntervals worth of data in each response. Once all data which has
already been collected has been sent, new data shall be sent as soon as a full dwNumIntervals worth of
data is available.

If there is no new data for a (dwNumIntervals* ftResampleInterval) period, the server shall still send a
response, with empty pointers for the arrays and dwCount = 0. This will allow the client to be sure
that the connection is still active.

For MinimumActualTime and MaximumActualTime, if more than one instance of the value exists
within a subinterval, which instance (time stamp) of the value returned is server dependent. In any
case, the server may set the OPCHDA_EXTRADATA quality flag to let the caller know that there are
other timestamps with that value.

4.5.1.5. IOPCHDA_AsyncRead::ReadAtTime

An Optional Method

HRESULT ReadAtTime (
[in] DWORD dwTransactionID,
[in] DWORD dwNumTimeStamps,
[in, size_is(dwNumTimeStamps)] FILETIME *ftTimeStamps,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the values and qualities from the history database for the specified timestamps for
one or more items. This function is intended to provide values to correlate with other values with a
known timestamp. For example, the values of sensors when lab samples were collected.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

54

OPC Historical Data Access Custom Interface Specification 1.0

The results are returned via the client's IOPCHDA_DataCallback::OnReadComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

dwNumTimeStamps The number of time stamps specified.
ftTimeStamps The timestamps for the requested data.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

When no value exists for a specified timestamp, a value shall be interpolated from the surrounding
values to represent the value at the specified timestamp.

4.5.1.6. IOPCHDA_AsyncRead::ReadModified

An Optional Method

HRESULT ReadModified (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

55

OPC Historical Data Access Custom Interface Specification 1.0

Description

This function reads the values, qualities, timestamps, user ID, and timestamp of the modification from
the history database for the specified time domain for one or more items.

The purpose of this function is to read values from history that have been modified/replaced (a value
was returned with a quality of OPCHDA_EXTRADATA, indicating that there were other values for
that item/timestamp which had been superseded).

The results are returned via the client's IOPCHDA_DataCallback::OnReadModifiedComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

dwNumValues The maximum number of values returned for any item
over the time range. If only one time is specified, this
number specifies the extent of the time range.

dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The time domain of the request is defined by htStartTime and htEndTime. If htEndTime is less than
htStartTime, the data shall be returned in reverse order, with later data coming first. Unlike the
synchronous method, if dwNumValues is non-zero, the function continues sending data in blocks of
size dwNumValues until all requested data has been sent. The CancelID can be used to cancel the
request.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

56

OPC Historical Data Access Custom Interface Specification 1.0

If a value has been modified multiple times, all values for the time are returned. This means that a
time stamp can appear in the array more than once. The order of the returned values with the same
time stamp should be from most recent to oldest modified value. It is server dependent whether it
keeps multiple modifications or only the most recent.

In asynchronous ReadModified, unlike in synchronous, if all three parameters (htStartTime,
htEndTime & dwNumValues) are specified, the function continues sending data in blocks of size
dwNumValues until all requested data has been sent. The CancelID which can be used to cancel the
request.

4.5.1.7. IOPCHDA_AsyncRead::ReadAttribute

A Required Method

HRESULT ReadAttribute (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] OPCHANDLE hServer,
[in] DWORD dwNumAttributes,
[in, size_is(dwNumAttributes)] DWORD * dwAttributeIDs,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumAttributes)] HRESULT ** ppErrors
);

Description

This function reads the attribute values and timestamps from the history database for the specified time
domain for an item.

This function is intended to be used to retrieve attributes that have changed to correlate the values of
these attributes with the values of their data. For example, the recalibration of a sensor may have
required the normal maximum and minimum attributes to be changed.

The results are returned via the client's IOPCHDA_DataCallback::OnReadAttributesComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the attribute history period to be
read. Note: the time structure is allocated and freed by
the client.

htEndTime The end of the attribute history period to be read.
Note: the time structure is allocated and freed by the
client.

hServer The server item handle for the item to be read
dwNumAttributes The number of attributes to be read.
dwAttributeIDs The list of attribute IDs to be read
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding dwAttributeID was valid.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

57

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened
OPC_E_INVALIDHA
NDLE

The handle is invalid.

E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDATTRID The attribute ID is not valid.

4.5.1.8. IOPCHDA_AsyncRead::Cancel

A Required Method

HRESULT Cancel(
[in] DWORD dwCancelID
);

Description

This function cancels the outstanding operation. The actual implementation is server specific, but the
server shall respond via the client's IOPCHDA_DataCallback::OnCancelComplete method.

Parameters Description

dwCancelID The server-generated cancelID which was returned
from the original method call.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_INVALIDARG The client has not established a connection via the

OPCHDA_CancelComplete ConnectionPoint.
E_FAIL The function was unsuccessful. The CancelID does not

match any outstanding operation on the server.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

58

OPC Historical Data Access Custom Interface Specification 1.0

4.5.2. IOPCHDA_AsyncUpdate

This is an Optional Interface

4.5.2.1. IOPCHDA_AsyncUpdate::QueryCapabilities

A Required Method

HRESULT QueryCapabilities(
[out] OPCHDA_UPDATECABILITIES*pCapabilities
);

Description

This function specifies the update methods that the server supports.

Parameters Description

pCapabilities The methods supported by the interface.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

Comments

While a part of the AsyncUpdate interface, this method will actually run to completion before
returning.

4.5.2.2. IOPCHDA_AsyncUpdate::Insert

An Optional Method

HRESULT Insert(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts values and qualities into the history database for the specified timestamps for one
or more items. If a value exists at the specified timestamp, the new value shall not be inserted; instead
ppErrors shall indicate an error.

This function is intended to insert new values at the specified timestamps; e.g., the insertion of lab data
to reflect the time of data collection.

The results are returned via the client's IOPCHDA_DataCallback::OnUpdateComplete method.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

59

OPC Historical Data Access Custom Interface Specification 1.0

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

dwNumItems The number of items to be inserted.
phServer The list of server item handles for the items to be

inserted.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the item values.
pdwQualities Array of the quality flags of the new values.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was inserted successfully.
OPC_E_BADRIGHTS The item is not editable.
OPC_E_INVALIDHANDLE The handle is invalid.

4.5.2.3. IOPCHDA_AsyncUpdate::Replace

An Optional Method

HRESULT Replace (
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function replaces values and qualities in the history database at the specified timestamps for one
or more items. If no value exists at the specified timestamp, the new value shall not be inserted;
instead ppErrors shall indicate an error.

This function is intended to replace existing values at the specified timestamp; e.g., correct lab data
that was improperly processed, but inserted into the history database.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

60

OPC Historical Data Access Custom Interface Specification 1.0

The results are returned via the client's IOPCHDA_DataCallback::OnUpdateComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

dwNumItems The number of items to be replaced.
phServer The list of server item handles for the items to be

replaced.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the item values.
pdwQualities Array of the quality flags of the new values.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was replaced successfully.
OPC_E_BADRIGHTS The item is not editable.
OPC_E_INVALIDHANDLE The handle is invalid.

4.5.2.4. IOPCHDA_AsyncUpdate::InsertReplace

An Optional Method

HRESULT InsertReplace(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts or replaces values and qualities at the specified timestamps for one or more items.
If the item has a value at the specified timestamp, the new value and quality shall replace the old one.
If there is no value at that timestamp, the function shall insert the new data.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

61

OPC Historical Data Access Custom Interface Specification 1.0

This function is intended to unconditionally insert/replace values and qualities; e.g., correction of
values for bad sensors.

The results are returned via the client's IOPCHDA_DataCallback::OnUpdateComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

dwNumItems The number of items to be inserted or replaced.
phServer The list of server item handles for the items to be

inserted or replaced.
ftTimeStamps Array of the time stamps for the new values.
vDataValues Array of structures which contain the item values.
pdwQualities Array of the quality flags of the new values.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item is not editable.
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

When the OnUpdateComplete call is sent to the client, S_OK as a ppError return code for an
individual value is allowed when the HDA server is unable to say whether there was already a value at
that timestamp. If the HDA server can determine whether the new value replaces a value that was
already there, it should use OPC_S_INSERTED or OPC_S_REPLACED to return that information.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

62

OPC Historical Data Access Custom Interface Specification 1.0

4.5.2.5. IOPCHDA_AsyncUpdate::DeleteRaw

An Optional Method

HRESULT DeleteRaw (
[in] DWORD dwTransactionID,
[in,out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is (dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

Description
This function deletes the values, qualities, and timestamps from the history database for the specified
time domain for one or more items.

This function is intended to be used to delete data that has been accidentally entered into the history
database; e.g., deletion of data from a source with incorrect timestamps.

The results are returned via the client's IOPCHDA_DataCallback::OnUpdateComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be deleted.
Note: the time structure is allocated and freed by the
client.

htEndTime The end of the history period to be deleted. Note: the
time structure is allocated and freed by the client.

dwNumItems The number of items to be deleted.
phServer The list of server item handles for the items to be

deleted.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The item values were deleted successfully.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

63

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item values cannot be deleted.
OPC_E_INVALIDHANDLE The handle is invalid.

Comment

4.5.2.6. IOPCHDA_AsyncUpdate::DeleteAtTime

An Optional Method

HRESULT DeleteAtTime (
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME ftTimeStamps,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

Description

This function deletes the values and qualities in the history database for the specified timestamps for
one or more items.

This function is intended to be used to delete specific data from the history database; e.g., lab data that
is incorrect and cannot be correctly reproduced.

The results are returned via the client's IOPCHDA_DataCallback::OnUpdateComplete method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

dwNumItems The number of items to be deleted.
phServer The list of server item handles for the items to be

deleted.
ftTimeStamps The timestamps for the data to be deleted.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating whether the

corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The item values were deleted successfully.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

64

OPC Historical Data Access Custom Interface Specification 1.0

ppError Codes

Return Code Description
S_OK The item was read successfully.
OPC_E_BADRIGHTS The item values cannot be deleted.
OPC_E_INVALIDHANDLE The handle is invalid.

4.5.2.7. IOPCHDA_AsyncUpdate::Cancel

A Required Method

HRESULT Cancel(
[in] DWORD dwCancelID
);

Description

This function cancels the outstanding operation. The actual implementation is server specific, but the
server shall respond via the client's IOPCHDA_DataCallback::OnCancelComplete method.

Parameters Description

dwCancelID The server-generated cancelID which was returned
from the original method call.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_INVALIDARG The client has not established a connection via the

OPCHDA_CancelComplete ConnectionPoint.
E_FAIL The function was unsuccessful. The CancelID does not

match any outstanding operation on the server.

4.5.3. IOPCHDA_AsyncAnnotations

4.5.3.1. IOPCHDA_ AsyncAnnotations::QueryCapabilities

A Required Method

HRESULT QueryCapabilities(
[out] OPCHDA_ANNOTATIONCAPABILITIES *pCapabilities
);

Description

This function specifies the methods that the server supports.

Parameters Description

pCapabilities The methods supported by the interface.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

65

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.

Comments

While a part of the AsyncAnnotations interface, this method will actually run to completion before
returning.

4.5.3.2. IOPCHDA_AsyncAnnotations::Read

A Required Method

HRESULT Read(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function reads the annotations from the history database in the specified time domain for the
specified item IDs.

This function is intended to read annotations for an item at specified timestamps.

The results are returned via the client's IOPCHDA_DataCallback::OnReadAnnotations method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The beginning of the history period to be read. Note:
the time structure is allocated and freed by the client.

htEndTime The end of the history period to be read. Note: the time
structure is allocated and freed by the client.

dwNumItems The number of annotation items to be read.
phServer The list of server item handles for the annotation items

to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating the success of the

individual annotation reads. The errors correspond to
the handles passed in phServer. This indicates whether
the read succeeded in obtaining a defined annotation
item. NOTE any FAILED error code indicates that the
corresponding Annotation structure is undefined.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

66

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The item was read successfully.
E_INVALIDARG An Invalid parameter was passed.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.

Comments

The time domain of the request is defined by htStartTime and htEndTime. If htEndTime is less than
htStartTime the data shall be returned in reverse order, with later data coming first.

If either htStartTime or htEndTime is given in string (relative) format, the absolute time of the
OPCHDA_TIME structure (ftTime) shall be set to the FILETIME which the relative time was
translated to by the server.

OPC_S_NODATA is returned only if no values are returned.

The order of the data returned shall match the order of the ItemIDs in the request.

4.5.3.3. IOPCHDA_AsyncAnnotations::Insert

An Optional Method

HRESULT Insert(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] OPCHDA_ANNOTATION
 *pAnnotationValues,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function inserts annotations into the history database.

This function is intended to insert annotations by users to document observations for a value at a
specified timestamp.

The results are returned via the client's IOPCHDA_DataCallback::OnInsertAnnotations method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

67

OPC Historical Data Access Custom Interface Specification 1.0

server in this call. The server shall return this identifier
along with the results of this call.

dwNumItems The number of annotation items to be inserted.
phServer The list of server item handles for the annotation items

to be inserted.
ftTimeStamps Array of time stamps for the annotations to be inserted.
pAnnotationValues Array of structures containing the annotation values to

be inserted.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating the success of the

individual annotation inserts. The errors correspond to
the handles passed in phServer.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the ppErrors

to determine what happened
E_NOTIMPL This server does not support this function.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The annotation was inserted successfully.
E_INVALIDARG An Invalid parameter was passed.
OPC_E_BADRIGHTS The annotation is not writable.
OPC_E_INVALIDHANDLE The handle is invalid.

4.5.3.4. IOPCHDA_AsyncAnnotations::Cancel

A Required Method

HRESULT Cancel(
[in] DWORD dwCancelID
);

Description

This function cancels the outstanding operation. The actual implementation is server specific, but the
server shall respond via the client's IOPCHDA_DataCallback::OnCancelComplete method.

Parameters Description

dwCancelID The server-generated cancelID which was returned
from the original method call.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

68

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_INVALIDARG The client has not established a connection via the

OPCHDA_CancelComplete ConnectionPoint.
E_FAIL The function was unsuccessful. The CancelID does not

match any outstanding operation on the server.

4.6. Playback Interface
4.6.1. IOPCHDA_Playback

This is an Optional Interface

This interface supports the playback functionality of a History server. This provides the capability to
get an initial set of data from the History server and then get continual updates of historical data. This
is different than the Asynchronous Advise methods in that those methods are centered around the
current time. The playback interface supports methods that retrieval data from the past and then
supply updates from stored data. Typically the updates are sent at a rate that is more frequent than the
time the data was stored. For example, the request could be to send 10 minutes worth of data every
minute.

4.6.1.1. IOPCHDA_Playback::ReadRawWithUpdate

A Required Method

HRESULT ReadRawWithUpdate(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] FILETIME ftUpdateDuration,
[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This function initially retrieves data from the start time to the end time. After the initial response it
periodically (every ftUpdateInterval) responds with an ftUpdateDuration amount of data. The time of
the last value returned in the initial response is used as the start time for the first update. After that, the
time of the last value returned in an update is used as the start time for the next update.

This function is intended to be used to playback raw history data. By controlling the update interval,
the data can be displayed on trends in real time, in slower motion, or faster than real time.

The results are returned via the client's IOPCHDA_DataCallback::OnPlayback method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

69

OPC Historical Data Access Custom Interface Specification 1.0

along with the results of this call.
htStartTime The earliest time of the history to be read. Note: the

time structure is allocated and freed by the client.
htEndTime The latest time of the history to be read. The end time

must be greater than the start time, otherwise
INVALID_PARMS is returned. Note: the time
structure is allocated and freed by the client.

dwNumValues The maximum number of values returned for any item
over the time range. If only one time is specified, this
number specifies the extent of the time range.

ftUpdateDuration The amount of time the update covers in.
ftUpdateInterval The interval to send data for updates.
dwNumItems The number of items to be read.
phServer The list of server item handles for the items to be read.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating the success of the

individual item reads. Indicates only whether the
corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened.
OPC_E_MAXEXCEEDED The maximum number of values returnable by

the server was exceeded.
E_INVALIDARG An Invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The Item was read successfully.
S_NODATA The function found no data to return.
E_INVALIDARG An Invalid parameter was passed.
OPC_E_BADRIGHTS The item is not readable.
OPC_E_INVALIDHANDLE The handle is invalid.
E_FAIL The Item read was unsuccessful.

Comments

Playback is only supported in the forward direction. The domain of the initial request is defined by
htStartTime, htEndTime, and dwNumValues The value of htStartTime must be defined. If
htEndTime is not specified, the request shall be for all data from the htStartTime for the requested
number of values. Then further data shall be sent according to the ftUpdateDuration and
ftUpdateInterval from the time of the last value returned.

If either the htStartTime or htEndTime is given in string (relative) format, the absolute time of the
OPCHDA_TIME structure (ftTime) will be set to the FILETIME the relative time was translated to by
the server.

This request continues sending data in blocks of dwNumvals until all requested data has been sent,
returns transaction ID which can be used to cancel the request, and uses the update rate on the group to
throttle the rate of block returns.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

70

OPC Historical Data Access Custom Interface Specification 1.0

The dwNumValues defines the maximum number of values for any item which will be returned in a
single callback. This could be for the initial set of data or any subsequent updates (notice therefore that
an update may require more than one callback).

Implementation of the operation is server dependent.

4.6.1.2. IOPCHDA_Playback::ReadProcessedWithUpdate

This method was changed between v1.0 and v1.1 of the standard, to pass the haAggregate as a
DWORD rather than an ENUM, to allow vendors to specify their own aggregates. Servers and
clients build with v1.0 of the standard will work with those built with v1.1, but v1.0 clients may not
be compatible with v1.1 servers which return vendor-specified aggregates.

An Optional Method

HRESULT ReadProcessedWithUpdate(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumIntervals,
[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD * haAggregate,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

Description

This operation initially retrieves data from the start time to the end time. After the initial response it
periodically (every ftUpdateInterval) responds with dwNumIntervals worth of data divided into
ftResampleInterval sized bins. The time of the last value returned in the initial response is used as the
start time for the first update. After that, the time of the last value returned in an update is used as the
start time for the next update.

This function is intended to be used to playback processed history data. By controlling the update
interval, the data can be displayed on trends in real time, in slower motion, or faster than real time.

The results are returned via the client's IOPCHDA_DataCallback::OnPlayback method.

Parameters Description

dwTransactionID An identifier created by the client and passed to the
server in this call. The server shall return this identifier
along with the results of this call.

htStartTime The earliest time of the history to be read. Note: the
time structure is allocated and freed by the client.

htEndTime The latest time of the history to be read. Note: the time
structure is allocated and freed by the client.

ftResampleInterval Time between return values.
dwNumIntervals The number of ResampleIntervals in an update.
ftUpdateInterval The interval to send data for updates.
dwNumItems The number of items to be read.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

71

OPC Historical Data Access Custom Interface Specification 1.0

phServer The list of processed server items to be retrieved.
haAggregate The list of processed values to be returned.
pdwCancelID Place to return a Server generated ID to be used in case

the operation needs to be canceled.
ppErrors Array of HRESULTs indicating the success of the

individual item reads. Indicates only whether the
corresponding server handle was valid.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function was partially successful. See the

ppErrors to determine what happened.
OPC_E_MAXEXCEEDED The maximum number of values returnable by

the server was exceeded.
E_NOTIMPL This server does not support this function.
E_INVALIDARG An Invalid parameter was passed.
E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The Item was read successfully.
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The handle is invalid.
E_FAIL The Item read was unsuccessful.

Comments

The domain of the initial request is defined by htStartTime, htEndTime, and ftResampleInterval. If
htStartTime or htEndTime is given in string (relative) format, the value returned will be the
FILETIME to which that value was translated by the server. All three must be specified. htEndTime
must be greater than htStartTime.

The ftResampleInterval determines how many subintervals the complete interval is divided into. The
specified function is calculated at each subinterval beginning with htStartTime and selecting the data
within the next ftResampleInterval, a value will be calculated according to the haAggregate at each
subinterval.

For MinimumActualTime and MaximumActualTime used with aggregate values, if more than one
instance of the value exists within a time range, which instance (time stamp) of the value is returned is
server dependent. In any case, the server may set the OPCHDA_EXTRADATA quality flag to let the
caller know that there are other timestamps with that value.

The domain of updates is defined by the time of the last value returned, the ftResampleInterval and
dwNumIntervals.

A ftResampleInterval of 0 is illegal resulting in a return status of E_INVALIDARG. If only an initial
set of data is desired, the dwNumIntervals should be set to 0 The request must still be cancelled.

The ftUpdateInterval can not be less than the ftResampleInterval.

The order of the data returned will match the order of the ItemIDs in the request.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

72

David Pierce
 Here it would be nice if the historian could let the caller know that there are more values. I suggest using the quality OPC_EXTRADATA to indicate that there are additional optima.YES

OPC Historical Data Access Custom Interface Specification 1.0

4.6.1.3. IOPCHDA_Playback::Cancel

A Required Method

HRESULT Cancel(
[in] DWORD dwCancelID
);

Description

This function cancels the outstanding operation. The actual implementation is server specific, but the
server shall respond via the OPCHDA_CancelComplete callback.

Parameters Description

dwCancelID The server-generated cancelID which was returned
from the original method call.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_INVALIDARG The client has not established a connection via the

OPCHDA_CancelComplete ConnectionPoint.
E_FAIL The function was unsuccessful. The CancelID does not

match any outstanding operation on the server.

4.7. IConnectionPointContainer Interface
This is a Required Interface if the Async Interface is supported

4.7.1. IConnectionPointContainer
The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology. Likewise the
details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections interfaces are well
defined by Microsoft and are not discussed here.

4.7.1.1. IConnectionPointContainer::EnumConnectionPoints
HRESULT EnumConnectionPoints(

[out] IEnumConnectionPoints **ppEnum
);

Description

Create an enumerator for the Connection Points supported between the OPCHDA server and the
Client.

Parameters Description

ppEnum Where to save the pointer to the connection point
enumerator. See the Microsoft documentation for a
discussion of IEnumConnectionPoints.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

73

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCHDA Servers must return an enumerator that includes IOPCHDA_DataCallback. Additional
vendor specific callbacks are also allowed.

4.7.1.2. IConnectionPointContainer::FindConnectionPoint
HRESULT FindConnectionPoint(

[in] REFIID riid,
[out] IConnectionPoint **ppCP
);

Description

Find a particular connection point between the OPCHDA server and the Client.

Parameters Description

riid The IID of the Connection Point. (e.g.
IID_IOPCHDA_DataCallBack)

ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of IConnectionPoint.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCHDA servers must support IID_IOPCHDA_DataCallback. Additional vendor specific callbacks
are also allowed.

4.8. Client Interfaces
In order to use connection points, the client must create an object which supports both the IUnknown
interface and all callback interfaces which the client wishes to use. The client would pass a pointer to
the IUnknown interface (NOT the callback interface) to the Advise method of the proper
IConnectionPoint in the server (as obtained from IConnectionPointContainer:: FindConnectionPoint or
EnumConnectionPoints). The Server shall call QueryInterface on the client object to obtain the
specific callback interface. Note that the transaction must be performed in this way in order for the
interface marshalling to work properly for Local or Remote servers.

The methods which must be implemented by the client are noted as required methods.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

74

OPC Historical Data Access Custom Interface Specification 1.0

4.8.1. IOPCHDA_DataCallback

This is a Required Interface

4.8.1.1. IOPCHDA_DataCallback::OnDataChange

This is a Required Method

HRESULT OnDataChange(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM *pItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle notifications from the OPCHDA server resulting from
calls to OPCHDA_AsyncRead::AdviseRaw and OPCHDA_AsyncRead::AdviseProcessed.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwNumItems The number of items that were read.

pItemValues The array of structures in which the item values are returned.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

75

OPC Historical Data Access Custom Interface Specification 1.0

OPC_E_BADRIGHTS The item is not readable
OPC_S_EXTRADATA There is more data available than was returned. (Used for

MinimumActualTime and MaximumActualTime when
there is more than one timestamp for the value.)

OPC_S_NODATA No data has changed but the update interval has passed.
E_FAIL The item read was unsuccessful.

Comments

Note that item values must be well defined regardless of the contents of the phrErrors field.

4.8.1.2. IOPCHDA_DataCallback::OnReadComplete

This is a Required Method

HRESULT OnReadComplete(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM *pItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors);

Description

This method is provided by the client to handle returned data from OPCHDA_AsyncRead::ReadRaw,
OPCHDA_AsyncRead::ReadProcessed, and OPCHDA_AsyncRead::ReadAtTime.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwNumItems The number of items that were read.

pItemValues The array of structures in which the item values are returned.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

76

OPC Historical Data Access Custom Interface Specification 1.0

OPC_E_BADRIGHTS The item is not readable
OPC_S_NODATA The function found no data to return.
OPC_S_EXTRADATA There is more data available than was returned. (Used for

MinimumActualTime and MaximumActualTime when
there is more than one timestamp for the value.)

OPC_S_MOREDATA More data is available in the time range beyond the number
of values requested. (This return code is only valid in a
response to a ReadRaw method call.)

E_FAIL The item read was unsuccessful.

Comments

Note that item values must be well defined regardless of the contents of the phrErrors field.

Note that a given client handle or aggregate type or timestamp may appear multiple times in an array.

4.8.1.3. IOPCHDA_DataCallback::OnReadModifiedComplete

This is a Required Method

HRESULT OnReadModifiedComplete (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_MODIFIEDITEM
 *pItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle returned data from
OPCHDA_AsyncRead::ReadModified.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwNumItems The number of items that were read.

pItemValues The array of structures in which the item values are returned.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

77

OPC Historical Data Access Custom Interface Specification 1.0

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.
OPC_E_BADRIGHTS The item is not readable
OPC_S_MOREDATA More data is available in the time range beyond the number

of values requested.
E_FAIL The item read was unsuccessful.

Comments

Note that item values must be well defined regardless of the contents of the phrErrors field.

Also note that a given client handle or timestamp may appear multiple times in an array.

4.8.1.4. IOPCHDA_DataCallback::OnReadAttributesComplete

This is a Required Method

HRESULT OnReadComplete(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] OPCHANDLE hClient,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCATTRIBUTE
 *pAttributeValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle returned data from
OPCHDA_AsyncRead::ReadAttribute.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

hClient The client handle for the item.

dwNumItems The number of items that were read.

pAttributeValues The array of structures in which the attribute values are returned.

phrErrors A list of HRESULTS for the attributes.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

78

OPC Historical Data Access Custom Interface Specification 1.0

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.
OPC_E_BADRIGHTS The item is not readable
OPC_S_CURRENTVALUE No history available for attribute.
E_FAIL The item read was unsuccessful.

Comments

Note that attribute values must be well defined regardless of the contents of the phrErrors field.

4.8.1.5. IOPCHDA_DataCallback::OnReadAnnotations

This is a Required Method

HRESULT OnReadAnnotations(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ANNOTATION
 *pAnnotationValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle returned data from
OPCHDA_AsyncReadAnnotations::Read.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwNumItems The number of items that were read.

pAnnotationValues The array of structures in which the annotation values are returned.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

79

OPC Historical Data Access Custom Interface Specification 1.0

OPC_E_BADRIGHTS The item is not readable
OPC_S_NODATA No data was found in the specified time range.
OPC_S_MOREDATA More data is available in the time range beyond the number

of values requested. (This return code is only valid in a
response to a ReadRaw method call.)

E_FAIL The item read was unsuccessful.

Comments

Note that annotation values must be well defined regardless of the contents of the phrErrors field.

4.8.1.6. IOPCHDA_DataCallback::OnInsertAnnotations

This is a Required Method

HRESULT OnInsertAnnotations (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE *phClients,
[in, size_is(dwCount)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle notifications from the server on completion of
OPCHDA_AsyncAnnotations::Insert.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwCount The number of items in the arrays.

phClients A pointer to an array of client handles.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

80

OPC Historical Data Access Custom Interface Specification 1.0

phrErrors Return Codes

Return Code Description
S_OK The item was updated successfully.
OPC_E_BADRIGHTS The client has no permission to update the item.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The Item update was unsuccessful.

Comments

NOTE that items for which an error was returned in the initial request shall NOT be returned here, i.e.
the returned list may be ‘sparse’ and also its order is not specified.

4.8.1.7. IOPCHDA_DataCallback::OnPlayback

This is a Required Method

HRESULT OnPlayback (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM * ppItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle notifications from the OPCHDA server resulting from
calls to OPCHDA_Playback::ReadRawWithUpdate and
OPCHDA_Playback::ReadProcessedWithUpdate.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwNumItems The number of items that were read.

ppItemValues The array of structures in which the values are returned.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

phrErrors Return Codes

Return Code Description
S_OK The returned data for this item is GOOD.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

81

OPC Historical Data Access Custom Interface Specification 1.0

OPC_E_BADRIGHTS The item is not readable
OPC_S_EXTRADATA More than one piece of data that may be hidden exists at

same timestamp.
OPC_S_NODATA No data has changed but the update interval has passed.
E_FAIL The item read was unsuccessful.

Comments

Note that values, timestamps and qualities must all be well defined regardless of the contents of the
phrErrors field.

4.8.1.8. IOPCHDA_DataCallback::OnUpdateComplete

This is a Required Method

HRESULT OnUpdateComplete (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE *phClients,
[in, size_is(dwCount)] HRESULT *phrErrors
);

Description

This method is provided by the client to handle notifications from the server on completion of
OPCHDA_AsyncUpdate::Insert, OPCHDA_AsyncUpdate::Replace,
OPCHDA_AsyncUpdate::InsertReplace, OPCHDA_AsyncUpdate::DeleteRaw, and
OPCHDA_AsyncUpdate::DeleteAtTime.

Parameters Description

dwTransactionID The client-generated TransactionID passed with the originating call

hrStatus S_OK if all phrErrors are S_OK, S_FALSE otherwise.

dwCount The number of items in the arrays.

phClients A pointer to an array of client handles.

phrErrors A list of HRESULTS for the items.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

82

OPC Historical Data Access Custom Interface Specification 1.0

phrErrors Return Codes

Return Code Description
S_OK The item was updated successfully.
OPC_E_BADRIGHTS The client has no permission to update the item.
OPC_E_DATAEXISTS Unable to insert – data already present.
OPC_E_NODATAEXISTS Unable to replace – no data exists.
OPC_S_NODATA No values to delete for the item in the specified time range.
OPC_S_INSERTED The requested insert occurred.
OPC_S_REPLACED The requested replace occurred.
E_INVALIDARG An invalid parameter was passed.
E_FAIL The Item update was unsuccessful.

Comments

NOTE that items for which an error was returned in the initial request shall NOT be returned here. I.e.
the returned list may be ‘sparse’ and also its order is not specified.

4.8.1.9. IOPCHDA_DataCallback::OnCancelComplete
HRESULT OnCancelComplete(

[in] DWORD dwCancelID
);

Description

This method is provided by the client to handle notifications from the server on completion of Async
Cancel.

Parameters Description

dwCancelID The client-generated TransactionID passed with the originating call

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

Comments

This Callback occurs only after an Async Cancel. Note that if the Cancel Request returned S_OK then
the client can expect to receive this callback. If the Cancel request Failed then the client should NOT
receive this callback

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

83

OPC Historical Data Access Custom Interface Specification 1.0

5. Description of Data Types, Parameters and Structures
5.1. OPCHDA_QUALITY
The values for OPCHDA_QUALITY were changed between v1.0 and v1.1 of the standard, to actually
define 32 bits, with bits 15-0 zeroed. This allows them to be used as bitmasks, as intended, against the
actual 32-bit quality field. Specifically, servers may return a quality that has information for both Data
Access quality and information for HDA quality, i.e. 0x000100c0.

OPCHDA_QUALITY values identify quality values specific to retrieval of historical data. Quality
values related to general data access are specified in the specification OPC Data Access Automation
Specification 2.0, OPC Foundation 1998. This specification supports the data access quality flags in
addition to those specified in this section.

bits 31 – 16 History Data Access Quality

bits 15 – 0 Data Access Flags

Quality Values Description Value Associat
ed DA
Quality

OPCHDA_EXTRADATA More than one piece of data that may be
hidden exists at same timestamp.

0x00010000 Good,
Bad,
Quest.

OPCHDA_INTERPOLATED Interpolated data value. 0x00020000 Good,
Bad,
Quest.

OPCHDA_RAW Raw data value. 0x00040000 Good,
Bad,
Quest.

OPCHDA_CALCULATED Calculated data value, as would be returned
from a ReadProcessed call.

0x00080000 Good,
Bad,
Quest.

OPCHDA_NOBOUND No data found to provide upper or lower
bound value.

0x00100000 Bad

OPCHDA_NODATA No data collected. Archiving not active (for
item or all items).

0x00200000 Bad

OPCHDA_DATALOST Collection started / stopped / lost. 0x00400000 Bad
OPCHDA_CONVERSION Scaling / conversion error. 0x00800000 Bad,

Quest.

Comments

OPCHDA_NOBOUND is intended to be used when bounding values are requested but not available. The
server returns an empty place holder (value NULL, timestamp server dependent) with a quality of
OPCHDA_NOBOUND.
For Aggregate values, the quality for each returned aggregate shall be GOOD (from the Data Access
standard, 110000xx) if the quality for all values used in the aggregate was GOOD. If the quality of any
value used in computing the aggregate was not GOOD, the quality returned shall be Sub-Normal
(010110xx).
In the case where interpolated data is requested, and there is an actual raw value for that timestamp, the
server should return OPCHDA_RAW as the quality of that value.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

84

OPC Historical Data Access Custom Interface Specification 1.0

5.2. OPCHDA ITEM ATTRIBUTES
This indicates the attribute IDs for the history data. The precise meaning of each attribute may be
server specific. Attributes not supported by the server shall return OPC_E_INVALIDATTRID in the
error code for that attribute. Additional attributes may be defined by vendors. Server specific
attributes must be defined with values beginning at 0x80000000. The OPC foundation reserves all
attribute IDs from 0 to 0x7fffffff.

The IOPCHDA_Server::GetAttributes method shall return the attributes supported by the server, with
a AttributeID, AttributeName, AttributeDescription, and AttributeDataType for each property. The
AttributeDataType is included to enable the client to specify filter values when browsing the server's
ItemIDs.

General attributes:

AttrID Description Data Type Value
OPCHDA_DATA_TYPE Specifies the data type for the item.

See the definition of a VARIANT for
valid values (VT_R4, etc.)

VT_I2 0x01

OPCHDA_DESCRIPTION Describes the item. VT_BSTR 0x02
OPCHDA_ENG_UNITS Specifies the label to use in displays

to define the units for the item (e.g.,
kg/sec).

VT_BSTR 0x03

OPCHDA_STEPPED Specifies whether data from the
history repository should be
displayed as interpolated (sloped
lines between points) or stepped
(vertically-connected horizontal lines
between points) data. Value of 0
indicates interpolated.

VT_BOOL 0x04

OPCHDA_ARCHIVING Indicates whether historian is
recording data for this item (0 means
no).

VT_BOOL 0x05

OPCHDA_DERIVE_EQUATION Specifies the equation to be used by a
derived item to calculate its value.
This is a free-form string.

VT_BSTR 0x06

OPCHDA_NODE_NAME Specifies the machine which is the
source for the item. This is intended
to be the broadest category for
defining sources. For an OPC Data
Access Server source, this is the
nodename or IP address of the server.
For non-OPC sources, the meaning of
this field is server-specific.

VT_BSTR 0x07

OPCHDA_PROCESS_NAME Specifies the process which is the
source for the item. This is intended
to the second-broadest category for
defining sources. For an OPC DA
server, this would be the registered
server name. For non-OPC sources,
the meaning of this field is server-
specific.

VT_BSTR 0x08

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

85

OPC Historical Data Access Custom Interface Specification 1.0

OPCHDA_SOURCE_NAME Specifies the name of the item on the
source. For an OPC DA server, this
is the ItemID. For non-OPC sources,
the meaning of this field is server-
specific.

VT_BSTR 0x09

OPCHDA_SOURCE_TYPE Specifies what sort of source
produces the data for the item. For an
OPC DA server, this would be
"OPC". For non-OPC sources, the
meaning of this field is server-
specific.

VT_BSTR 0x0a

OPCHDA_NORMAL_MAXIMUM Specifies the upper limit for the
normal value range for the item.
OPCHDA_NORMAL_MAXIMUM
is used for trend display default
scaling and exception deviation limit
calculations.
OPCHDA_ NORMAL _MAXIMUM
should be the normal high value for
the item.

VT_R8 0x0b

OPCHDA_NORMAL_MINIMUM Specifies the lower limit for the
normal value range for the item.
OPCHDA_ NORMAL _MINIMUM
is used for trend display default
scaling and exception deviation limit
calculations.
OPCHDA_ NORMAL _MINIMUM
should be the normal low value for
the item.

VT_R8 0x0c

OPCHDA_ITEMID Specifies the item id. This is used to
allow filtering in the CreateBrowse
method.

VT_BSTR 0x0d

Attributes which affect how the data is historized:

Attributes Description Data Type Value
OPCHDA_MAX_TIME_INT Specifies the maximum interval

between data points in the history
repository regardless of their value
change.
A new value shall be stored in history
whenever
OPCHDA_MAX_TIME_INT
seconds have passed since the last
value stored for the item.

VT_FILETI
ME

0x0e

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

86

OPC Historical Data Access Custom Interface Specification 1.0

OPCHDA_MIN_TIME_INT Specifies the minimum interval
between data points in the history
repository regardless of their value
change.
A new value shall be not be stored in
history unless
OPCHDA_MIN_TIME_INT seconds
have passed since the last value
stored for the item.

VT_FILETI
ME

0x0f

OPCHDA_EXCEPTION_DEV Specifies the minimum amount that
the data for the item must change in
order for the change to be reported to
the history database. See
OPCHDA_EXCEPTION_DEV_TYPE for
the specific meaning of this field.

VT_R8 0x10

OPCHDA_EXCEPTION_DEV_TY
PE

Specifies whether the
OPCHDA_EXCEPTION_DEV is given as
an absolute value, percent of span, or
percent of value. The span is defined
as OPCHDA_HIGH_ENTRY_LIMIT -
OPCHDA_LOW_ENTRY_LIMIT.

VT_I2 0x11

OPCHDA_HIGH_ENTRY_LIMIT Specifies the highest valid value for
the item. A value for the item that is
above
OPCHDA_HIGH_ENTRY_LIMIT
cannot be entered into history. This
is the top of the span.

VT_R8 0x12

OPCHDA_LOW_ENTRY_LIMIT Specifies the lowest valid value for
the item. A value for the item that is
below
OPCHDA_LOW_ENTRY_LIMIT
cannot be entered into history. This
is the zero for the span.

VT_R8 0x13

5.3. Structures and Masks
5.3.1. OPCHDA_ITEM

This structure was changed between v1.0 of the standard and v1.1 of the standard. Rather than passing the
Aggregate as an ENUM, it must be passed as a DWORD, to allow vendors to use vendor-specific
aggregate values.
 Servers and clients build with v1.0 of the standard will work with those built with v1.1, but v1.0 clients
may not be compatible with v1.1 servers which return vendor-specified aggregates.

typedef struct {
 OPCHANDLE hClient;
 DWORD haAggregate;
 DWORD dwCount;
 [size_is(dwCount)] FILETIME *pftTimeStamps;
 [size_is(dwCount)] DWORD *pdwQualities;
 [size_is(dwCount)] VARIANT *pvDataValues;
} OPCHDA_ITEM;

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

87

OPC Historical Data Access Custom Interface Specification 1.0

Member Description

hClient The client provided handle for this item
haAggregate The aggregate which was applied to retrieve the data. For

the IOPCSyncIO::ReadRawHistory and
IOPCSyncIO::ReadHistoryAtTime, this should be
OPCHDA_NOAGGREGATE.

dwCount Count of the number of data values returned for the item.
ftTimeStamps UTC TimeStamps for this item’s values. This field may be

NULL if timestamps were not requested in the call.
pdwQualities The qualities of the data for this item.
vDataValues The values for the item.

5.3.2. OPCHDA_EDITTYPE
This indicates the way in which the history data is to be edited.

EditHistory Values Description

OPCHDA_INSERT Insert data into history. If data already exists at the timestamp
specified, the operation may optionally fail.

OPCHDA_REPLACE Replace data in history. If data does not exist at the timestamp
specified, the operation may optionally fail.

OPCHDA_INSERTREPLACE Insert or replace the data in history, depending on whether data
already exists or not.

OPCHDA_DELETE Delete data from history.

5.3.3. OPCHDA_AGGREGATE
This indicates the aggregate to be used when retrieving processed history. The precise meaning of
each aggregate may be server specific. Aggregates not supported by the server shall return
OPC_E_INVALIDARG in the error code for that aggregate. Additional aggregates may be defined by
vendors. Server specific aggregates must be defined with values beginning at 0x80000000. The OPC
foundation reserves all aggregates IDs from 0 to 0x7fffffff.

Aggregate Value Description

OPCHDA_INTERPOLATIVE Do not retrieve an aggregate. This is used for retrieving
interpolated values.

OPCHDA_TOTAL Retrieve the totalized value (time integral) of the data over the
resample interval.

OPCHDA_AVERAGE Retrieve the average data over the resample interval.
OPCHDA_TIMEAVERAGE Retrieve the time weighted average data over the resample

interval.
OPCHDA_COUNT Retrieve the number of raw values over the resample interval.
OPCHDA_STDEV Retrieve the standard deviation over the resample interval.
OPCHDA_MINIMUMACTUALTIME Retrieve the minimum value in the resample interval and the

timestamp of the minimum value.
OPCHDA_MINIMUM Retrieve the minimum value in the resample interval.
OPCHDA_MAXIMUMACTUALTIME Retrieve the maximum value in the resample interval and the

timestamp of the maximum value.
OPCHDA_MAXIMUM Retrieve the maximum value in the resample interval.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

88

OPC Historical Data Access Custom Interface Specification 1.0

OPCHDA_START Retrieve the value at the beginning of the resample interval. The
time stamp is the time stamp of the beginning of the interval.

OPCHDA_END Retrieve the value at the end of the resample interval. The time
stamp is the time stamp of the end of the interval.

OPCHDA_DELTA Retrieve the difference between the first and last value in the
resample interval.

OPCHDA_REGSLOPE Retrieve the slope of the regression line over the resample
interval.

OPCHDA_REGCONST Retrieve the intercept of the regression line over the resample
interval. This is the value of the regression line at the start of the
interval.

OPCHDA_REGDEV Retrieve the standard deviation of the regression line over the
resample interval.

OPCHDA_VARIANCE Retrieve the variance over the sample interval .
OPCHDA_RANGE Retrieve the difference between the minimum and maximum

value over the sample interval.
OPCHDA_DURATIONGOOD Retrieve the duration (in seconds) of time in the interval during

which the data is good.
OPCHDA_DURATIONBAD Retrieve the duration (in seconds) of time in the interval during

which the data is bad.
OPCHDA_PERCENTGOOD Retrieve the percent of data (1 equals 100 percent) in the

interval which has good quality.
OPCHDA_PERCENTBAD Retrieve the percent of data (1 equals 100 percent) in the

interval which has bad quality.
OPCHDA_WORSTQUALITY Retrieve the worst quality of data in the interval.
OPCHDA_ANNOTATIONS Retrieve the number of annotations in the interval.

Comment
The implementation of these aggregate types is server dependent.

Where feasible, such as for interpolated data, maximum, minimum, etc., the data type that the server
should return is the type of the originally recorded data. For calculated types the returned data type is
double.

All the time stamps returned are those of the beginning of the aggregate interval except for those
aggregates which explicitly state otherwise.

5.3.4. OPCHDA_TIME
typedef struct {
 BOOL bString;
 [string] LPWSTR szTime;
 FILETIME ftTime;
} OPCHDA_TIME;

Member Description

bString Flag indicating if the time is in string (relative time) format
(TRUE) or FILETIME (absolute) format (FALSE).

szTime String format for the time.
ftTime FILETIME format for the time.

For the szTime, the time is considered to be a relative time local to the server. The format for the
relative time is:

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

89

OPC Historical Data Access Custom Interface Specification 1.0

 keyword+/-offset+/-offset…
where keyword and offset are as specified in the table below. Whitespace is ignored. Each offset
must be preceded by a signed integer that specifies the number and direction of the offset. If the
integer preceding the offset is unsigned, the value of the preceding sign is assumed (beginning default
sign is positive). The key word refers to the beginning of the specified time period. DAY means the
timestamp at the beginning of the current day (00:00 hours, midnight), MONTH means the timestamp
at the beginning of the current month, etc.

For example, “DAY -1D+7H30M” could represent the start time for data request for a daily report
beginning at 7:30 in the morning of the current day (DAY = the first timestamp for today, -1D would
make it the first timestamp for yesterday, +7H would take it to 7 a.m. yesterday, +30M would make it
7:30 a.m. yesterday (the + on the last term is carried over from the last term).

Similarly, “MO-1D+5h” would be 5 a.m. on the last day of the previous month, “NOW-1H15M”
would be an hour and fifteen minutes ago, and “YEAR+3MO” would be the first timestamp of April 1
this year.

The null value for time is bString=TRUE and an empty time string. When string times are sent to the
server, the server shall return the FILETIME to which that string resolved. When bString=FALSE, the
time string is an empty string.

Keyword Offset Description

NOW The current UTC time as calculated on the server.
SECOND S The start of the current second.
MINUTE M The start of the current minute.
HOUR H The start of the current hour.
DAY D The start of the current day.
WEEK W The start of the current week.
MONTH MO The start of the current month.
YEAR Y The start of the current year.

Offset Description

S Offset from time in seconds.
M Offset from time in minutes.
H Offset from time in hours.
D Offset from time in days.
W Offset from time in weeks.
MO Offset from time in months.
Y Offset from time in years.

5.3.5. OPCHDA_ATTRIBUTE
typedef struct {
 OPCHANDLE hClient;
 DWORD dwNumValues;
 DWORD dwAttributeID
 [size_is (dwNumValues)] FILETIME *ftTimeStamps;
 [size_is (dwNumValues)] VARIANT *vAttributeValues;
} OPCHDA_ATTRIBUTE;

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

90

OPC Historical Data Access Custom Interface Specification 1.0

Member Description

hClient The client provided handle for this item
dwNumValues Count of the number of attribute values returned for the

attribute.
dwAttributeID AttributeID of this value.
ftTimeStamps UTC TimeStamps for this attribute’s values.
vAttributeValues Array of values for the attribute.

Comment
The return from the call is an array of these structures, one for each AttributeID specified in the call.
The timestamp is that of the time when the attribute was set to the specified value, except for the first
value returned: as stated earlier, the first value returned shall be the value of the attribute at the start
time of the specified interval, and thus the timestamp for that value should be the start time of the
interval.

5.3.6. OPCHDA_MODIFIEDITEM
typedef struct {
 OPCHANDLE hClient;
 DWORD dwCount;
 [size_is(dwCount)] FILETIME *pftTimeStamps;
 [size_is(dwCount)] DWORD *pdwQualities;
 [size_is(dwCount)] VARIANT *pvDataValues;
 [size_is(dwCount)] FILETIME *pftModificationTime;
 [size_is(dwCount)] OPCHDA_EDITTYPE *pEditType;
 [size_is(dwCount)] LPWSTR *szUser;
} OPCHDA_MODIFIEDITEM;

Member Description

hClient The client provided handle for this item
dwNumValues Count of the number of data items returned for the item.
pftTimeStamps UTC TimeStamps for this item’s values. This field may be

NULL if timestamps were not requested in the call.
pdwQualities The qualities of the data for this item.
pvDataValues The values for the item.
pftModificationTime The time the modification was made. Support for this field

is optional. A NULL pointer shall be returned if it is not
implemented.

pEditType The modification type for the item.
szUser The name of the user that made the modification. Support

for this field is optional. A NULL pointer shall be returned
if it is not implemented.

5.3.7. OPCHDA_ANNOTATION
typedef struct {
 OPCHANDLE hClient;
 DWORD dwNumValues;
 [size_is (dwNumValues)] FILETIME *ftTimeStamps;
 [size_is (dwNumValues), string] LPWSTR *szAnnotation;
 [size_is (dwNumValues)] FILETIME *ftAnnotationTime;

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

91

OPC Historical Data Access Custom Interface Specification 1.0

 [size_is (dwNumValues), string] LPWSTR *szUser;
} OPCHDA_ANNOTATION;

Member Description

hClient The client provided handle for this item
dwNumValues Count of the number of annotations returned for the item.
ftTimeStamp UTC TimeStamps for the annotations.
szAnnotation The array of annotations.
ftAnnotationTime The time the annotation was added. This will probably be

different than the ftTimeStamp.
szUser The name of the user that added the annotation.

5.3.8. OPCHDA_OPERATORCODES

typedef enum {OPCHDA_EQUAL =1,
OPCHDA_LESS,
OPCHDA_LESSEQUAL,
OPCHDA_GREATER,
OPCHDA_GREATEREQUAL,
OPCHDA_NOTEQUAL
} OPCHDA_OPERATORCODES

Member Description

OPCHDA_EQUAL Attribute value equals filter value.
OPCHDA_LESS Attribute value is less than filter

value.
OPCHDA_LESSEQUAL Attribute value is less than or equal to

filter.
OPCHDA_GREATER Attribute value is greater than filter

value.
OPCHDA_GREATEREQUAL Attribute value is greater than or equal

to filter value.
OPCHDA_NOTEQUAL Attribute value is not equal to filter

value.

5.3.9. OPCHDA_UPDATECAPABILITIES
Identifies the capabilities of the update interfaces. The values of the enumeration are combined to
form a mask when the capabilities are queried.

typedef enum {OPCHDA_INSERTCAP = 0x01,
OPCHDA_REPLACECAP= 0x02,
OPCHDA_INSERTREPLACECAP= 0x04,
OPCHDA_DELETERAWCAP= 0x08,
OPCHDA_DELETEATTIMECAP= 0x10
} OPCHDA_ UPDATECAPABILITIES

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

92

OPC Historical Data Access Custom Interface Specification 1.0

5.3.10. OPCHDA_ANNOTATIONCAPABILITIES
Identifies the capabilities of the annotation interfaces. The values of the enumeration are combined to
form a mask when the capabilities are queried.

typedef enum {OPCHDA_READANNOTATIONCAP = 0x01,
OPCHDA_INSERTANNOTATIONCAP = 0x02
} OPCHDA_ ANNOTATIONCAPABILITIES

5.3.11. OPCHDA_BROWSETYPE

typedef enum { OPCHDA_BRANCH =1,
OPCHDA_LEAF,
OPCHDA_FLAT,
OPCHDA_ITEMS
} OPCHDA_ BROWSETYPE

Member Description

OPCHDA_ BRANCH Returns only nodes that have children. These may or may
not be items.

OPCHDA_LEAF Returns only nodes that do not have children. These are
always items.

OPCHDA_FLAT Returns everything at and below this level including all
children of children as fully qualified ItemIDs – basically
‘pretends’ that the address space at this level and below is
FLAT. This parameter is ignored for FLAT address space.

OPCHDA_ITEMS Returns all items at the current browse position. Note: this
browse type will normally be used instead of
OPCHDA_LEAF to guarantee that all items are displayed.

5.3.12. OPCHDA_BROWSEDIRECTION

typedef enum { OPCHDA_BROWSE_UP =1,
OPCHDA_BROWSE_DOWN,
OPCHDA_BROWSE_DIRECT
} OPCHDA_BROWSEDIRECTION

Member Description

OPCHDA_BROWSE_UP Move the browse position up to the parent branch of the
current position.

OPCHDA_BROWSE_DOWN Move the browse position down to the branch indicated by
szString from the current position. Note: szString must
contain only the name of a branch that is a child of the
current position. It cannot move multiple branches.

OPCHDA_BROWSE_DIRECT Move the browse position to the fully qualified branch
indicated by szString. Note: this move is relative to the
root, not the current position.

5.3.13. OPCHDA_SERVERSTATUS

typedef enum { OPCHDA_UP =1,
OPCHDA_DOWN,

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

93

OPC Historical Data Access Custom Interface Specification 1.0

OPCHDA_INDETERMINATE
} OPCHDA_ SERVERSTATUS

Member Description

OPCHDA_UP The historian is running.
OPCHDA_DOWN The historian is not running.
OPCHDA_INDETERMINATE The status of the historian is indeterminate. See the

szStatusString for further information.

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

94

OPC Historical Data Access Custom Interface Specification 1.0

6. Component Categories Registration
During the registration process, each OPC History Data Server must register itself with the Component
Categories Manager, a Microsoft supplied system COM object. OPC History Data Clients will query
the Components Category Manager to enumerate the CLSIDs of all registered OPC History Data
Servers.

Given below is the category GUID for OPC History Data Access servers.

“OPC History Data Access Servers Version 1.0:

CATID_OPCHDAServer10 = {7DE5B060-E089-11d2-A5E6-000086339399};

Note: At this time the Component Categories Manager stores its information in the
registry, however this will change in the near future. Please use the Component
Categories Manager API to access this information rather than using the registry
directly.

6.1. Server Registration
To Register with the Component Categories Manager, a server should first register the OPC defined
Category ID (CATID) and the OPC defined Category Description by calling ICatRegister::
RegisterCategories(), and then register its own CLSID as an implementation of the CATID with a call
to ICatRegister:: RegisterClassImplCategories().

To get an interface pointer to ICatRegister, call CoCreateInstance() as in this example:
#include <comcat.h>

CoCreateInstance(CLSID_StdComponentCategoriesMgr, NULL, CLSCTX_INPROC_SERVER,
IID_ICatRegister, (void**)&pcr);

Here is how the sample server registers and un-registers the component categories:
EXTERN_C const GUID CATID_OPCHDAServer10;
// This is defined in opchda_cats.c

// Create the Component Catagories
void CreateOPCHDACat(void)
{

 HRESULT hr, hr2;
 ICatRegister *pCat;

 // Get the Catagories Interface
 //
 hr = CoCreateInstance (CLSID_StdComponentCategoriesMgr, NULL,
 CLSCTX_INPROC_SERVER, IID_ICatRegister,
 (void **)&pCat);
 if (SUCCEEDED(hr))
 {
 CATEGORYINFO Catlist[1];
 // Build the catagory info
 //
 Catlist[0].catid = CATID_OPCHDAServer10;
 Catlist[0].lcid = 0x0409;
 wcscpy(Catlist[0].szDescription, L"OPC Historical Data Access Servers
Version 1.0");

 // And register the Category
 //
 hr2 = pCat->RegisterCategories(

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

95

OPC Historical Data Access Custom Interface Specification 1.0

 1, Catlist);

 if (FAILED(hr2)) MessageBox(NULL, "CreateOPCHDACat:RegisterCatagories
Failed", NULL, MB_OK);

 pCat->Release();

 } else MessageBox(NULL, "CreateOPCDACat:CoCreateInstance Failed", NULL, MB_OK);
}

void RegOPCHDACat(GUID clsid)
{

 HRESULT hr, hr2;
 ICatRegister *pCat;

 // Get the Categories Interface
 //
 hr = CoCreateInstance (CLSID_StdComponentCategoriesMgr, NULL,
 CLSCTX_INPROC_SERVER, IID_ICatRegister,
 (void **)&pCat);
 if (SUCCEEDED(hr))
 {
 // Register the categories as being "implemented" by
 // the passed clsid.
 //
 CATID rgcatid[1] ;
 rgcatid[0] = CATID_OPCHDAServer10;
 hr2 = pCat->RegisterClassImplCategories(clsid, 1, rgcatid);

 if(FAILED(hr2))MessageBox(NULL, "RegOPCHDACat:RegisterClassImplCatagories
Failed", NULL, MB_OK);

 pCat->Release();

 } else MessageBox(NULL, "RegOPCDACat:CoCreateInstance Failed", NULL, MB_OK);
}

6.2. Client Enumeration

Editor’s Note: This section will change if the TSC adopts the proposed DCOM
aware remote OPC browse server.

To get a list of CLSIDs of all OPC History Servers registered with the Component Categories
Manager, the client calls ICatInformation::EnumClassesOfCategories() to return an enumerator
interface, IEnumCLSID as in this code snippet:

ICatInformation* pcr = NULL ;
HRESULT hr = S_OK ;

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
 NULL, CLSCTX_INPROC_SERVER, IID_ICatInformation, (void**)&pcr);

IEnumCLSID* pEnumCLSID;

CLSID catid = IID_OPCHDAServerCATID;
pcr->EnumClassesOfCategories(1, &catid, 1, &catid, &pEnumCLSID);

// get 10 at a time for efficiency
unsigned long c;
CLSID clsids[10];

while (SUCCEEDED(hr = pEnumCLSID->Next(10, clsids, &c)))
{

{
 // clsid[i] is a CLSID that implements the component category ...

 .
 .

 for(unsigned long i = 0; i < c; i++)

 .

}
}

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

96

OPC Historical Data Access Custom Interface Specification 1.0

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

97

OPC Historical Data Access Custom Interface Specification 1.0

7. Appendix A – Historical Data Access IDL Specification
The current files require MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.

Use the command line MIDL //Oicf opcda.idl.

The resulting OPCHDA.H file should be included in all clients and servers.

The resulting OPCHDA_I.C file defines the interface IDs and should be linked into all clients and
servers.

NOTE: This IDL file and the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfaces to your server (which
is allowed) you must generate a SEPARATE vendor specific IDL file to describe
only those interfaces and a separate vendor specific ProxyStub DLL to marshall
only those interfaces.

Note: See the OPC Overview document (OPCOVW.DOC) for a listing and disucssion of
OPCCOMN.IDL.

// OPCHDA.IDL
// REVISION: 01/26/2001 04:00 PM (CST)
// VERSIONINFO 1.1.0.0
//

import "oaidl.idl" ;

typedef enum tagOPCHDA_SERVERSTATUS {
 OPCHDA_UP =1,
 OPCHDA_DOWN,
 OPCHDA_INDETERMINATE
 } OPCHDA_SERVERSTATUS;

typedef enum tagOPCHDA_BROWSEDIRECTION {
 OPCHDA_BROWSE_UP =1,
 OPCHDA_BROWSE_DOWN,
 OPCHDA_BROWSE_DIRECT
 } OPCHDA_BROWSEDIRECTION;

typedef enum tagOPCHDA_BROWSETYPE {
 OPCHDA_BRANCH =1,
 OPCHDA_LEAF,
 OPCHDA_FLAT,
 OPCHDA_ITEMS
 } OPCHDA_BROWSETYPE;

typedef enum tagOPCHDA_ANNOTATIONCAPABILITIES {
 OPCHDA_READANNOTATIONCAP = 0x01,
 OPCHDA_INSERTANNOTATIONCAP = 0x02
 } OPCHDA_ANNOTATIONCAPABILITIES;

typedef enum tagOPCHDA_UPDATECAPABILITIES {
 OPCHDA_INSERTCAP = 0x01,
 OPCHDA_REPLACECAP= 0x02,
 OPCHDA_INSERTREPLACECAP= 0x04,
 OPCHDA_DELETERAWCAP= 0x08,

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

98

OPC Historical Data Access Custom Interface Specification 1.0

 OPCHDA_DELETEATTIMECAP= 0x10
 } OPCHDA_UPDATECAPABILITIES;

typedef enum tagOPCHDA_OPERATORCODES {
 OPCHDA_EQUAL =1,
 OPCHDA_LESS,
 OPCHDA_LESSEQUAL,
 OPCHDA_GREATER,
 OPCHDA_GREATEREQUAL,
 OPCHDA_NOTEQUAL
 } OPCHDA_OPERATORCODES;

typedef enum tagOPCHDA_EDITTYPE {
 OPCHDA_INSERT = 1,
 OPCHDA_REPLACE,
 OPCHDA_INSERTREPLACE,
 OPCHDA_DELETE
 } OPCHDA_EDITTYPE;

typedef enum tagOPCHDA_AGGREGATE {
 OPCHDA_NOAGGREGATE = 0,
 OPCHDA_INTERPOLATIVE,
 OPCHDA_TOTAL,
 OPCHDA_AVERAGE,
 OPCHDA_TIMEAVERAGE,
 OPCHDA_COUNT,
 OPCHDA_STDEV,
 OPCHDA_MINIMUMACTUALTIME,
 OPCHDA_MINIMUM,
 OPCHDA_MAXIMUMACTUALTIME,
 OPCHDA_MAXIMUM,
 OPCHDA_START,
 OPCHDA_END,
 OPCHDA_DELTA,
 OPCHDA_REGSLOPE,
 OPCHDA_REGCONST,
 OPCHDA_REGDEV,
 OPCHDA_VARIANCE,
 OPCHDA_RANGE,
 OPCHDA_DURATIONGOOD,
 OPCHDA_DURATIONBAD,
 OPCHDA_PERCENTGOOD,
 OPCHDA_PERCENTBAD,
 OPCHDA_WORSTQUALITY,
 OPCHDA_ANNOTATIONS
 } OPCHDA_AGGREGATE;

typedef DWORD OPCHANDLE;

typedef struct tagOPCHDA_ANNOTATION {
 OPCHANDLE hClient;
 DWORD dwNumValues;
 [size_is (dwNumValues)] FILETIME *ftTimeStamps;
 [size_is (dwNumValues), string] LPWSTR *szAnnotation;
 [size_is (dwNumValues)] FILETIME *ftAnnotationTime;
 [size_is (dwNumValues), string] LPWSTR *szUser;

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

99

OPC Historical Data Access Custom Interface Specification 1.0

} OPCHDA_ANNOTATION;

typedef struct tagOPCHDA_MODIFIEDITEM {
 OPCHANDLE hClient;
 DWORD dwCount;
 [size_is(dwCount)] FILETIME *pftTimeStamps;
 [size_is(dwCount)] DWORD *pdwQualities;
 [size_is(dwCount)] VARIANT *pvDataValues;
 [size_is(dwCount)] FILETIME *pftModificationTime;
 [size_is(dwCount)] OPCHDA_EDITTYPE *pEditType;
 [size_is(dwCount)] LPWSTR *szUser;
} OPCHDA_MODIFIEDITEM;

typedef struct tagOPCHDA_ATTRIBUTE {
 OPCHANDLE hClient;
 DWORD dwNumValues;
 DWORD dwAttributeID;
 [size_is (dwNumValues)] FILETIME *ftTimeStamps;
 [size_is (dwNumValues)] VARIANT *vAttributeValues;
} OPCHDA_ATTRIBUTE;

typedef struct tagOPCHDA_TIME {
 BOOL bString;
 [string] LPWSTR szTime;
 FILETIME ftTime;
} OPCHDA_TIME;

typedef struct tagOPCHDA_ITEM {
 OPCHANDLE hClient;
 DWORD haAggregate;
 DWORD dwCount;
 [size_is(dwCount)] FILETIME *pftTimeStamps;
 [size_is(dwCount)] DWORD *pdwQualities;
 [size_is(dwCount)] VARIANT *pvDataValues;
} OPCHDA_ITEM;

// AttributeID

cpp_quote("#define OPCHDA_DATA_TYPE 0x01")
cpp_quote("#define OPCHDA_DESCRIPTION 0x02")
cpp_quote("#define OPCHDA_ENG_UNITS 0x03")
cpp_quote("#define OPCHDA_STEPPED 0x04")
cpp_quote("#define OPCHDA_ARCHIVING 0x05")
cpp_quote("#define OPCHDA_DERIVE_EQUATION 0x06")
cpp_quote("#define OPCHDA_NODE_NAME 0x07")
cpp_quote("#define OPCHDA_PROCESS_NAME 0x08")
cpp_quote("#define OPCHDA_SOURCE_NAME 0x09")
cpp_quote("#define OPCHDA_SOURCE_TYPE 0x0a")
cpp_quote("#define OPCHDA_NORMAL_MAXIMUM 0x0b")
cpp_quote("#define OPCHDA_NORMAL_MINIMUM 0x0c")
cpp_quote("#define OPCHDA_ITEMID 0x0d")

cpp_quote("#define OPCHDA_MAX_TIME_INT 0x0e")
cpp_quote("#define OPCHDA_MIN_TIME_INT 0x0f")
cpp_quote("#define OPCHDA_EXCEPTION_DEV 0x10")

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

100

OPC Historical Data Access Custom Interface Specification 1.0

cpp_quote("#define OPCHDA_EXCEPTION_DEV_TYPE 0x11")
cpp_quote("#define OPCHDA_HIGH_ENTRY_LIMIT 0x12")
cpp_quote("#define OPCHDA_LOW_ENTRY_LIMIT 0x13")

// OPCHDA_QUALITY -- these are the high-order 16 bits, OPC DA Quality
// occupies low-order 16 bits

cpp_quote("#define OPCHDA_EXTRADATA 0x00010000")
cpp_quote("#define OPCHDA_INTERPOLATED 0x00020000")
cpp_quote("#define OPCHDA_RAW 0x00040000")
cpp_quote("#define OPCHDA_CALCULATED 0x00080000")
cpp_quote("#define OPCHDA_NOBOUND 0x00100000")
cpp_quote("#define OPCHDA_NODATA 0x00200000")
cpp_quote("#define OPCHDA_DATALOST 0x00400000")
cpp_quote("#define OPCHDA_CONVERSION 0x00800000")

//**
//Interface Definitions
//

//**
// {1F1217B1-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b1, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);

[
 object,
 uuid(1F1217B1-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_Browser : IUnknown
{
 HRESULT GetEnum(
 [in] OPCHDA_BROWSETYPE dwBrowseType,
 [out] LPENUMSTRING *ppIEnumString
);

 HRESULT ChangeBrowsePosition(
 [in] OPCHDA_BROWSEDIRECTION dwBrowseDirection,
 [in,string] LPCWSTR szString
);

 HRESULT GetItemID (
 [in,string] LPCWSTR szNode,
 [out,string] LPWSTR *pszItemID
);

 HRESULT GetBranchPosition (
 [out,string] LPWSTR *pszBranchPos
);

}

//**
// {1F1217B0-DEE0-11d2-A5E5-000086339399}

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

101

OPC Historical Data Access Custom Interface Specification 1.0

//DEFINE_GUID(<<name>>,
//0x1f1217b0, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B0-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_Server : IUnknown
{
 HRESULT GetItemAttributes(
 [out] DWORD *pdwCount,
 [out, size_is(,*pdwCount)] DWORD **ppdwAttrID,
 [out, size_is(,*pdwCount),string] LPWSTR **ppszAttrName,
 [out, size_is(,*pdwCount),string] LPWSTR **ppszAttrDesc,
 [out, size_is(,*pdwCount)] VARTYPE
 **ppvtAttrDataType
);

 HRESULT GetAggregates(
 [out] DWORD
 *pdwCount,
 [out, size_is(,*pdwCount)] DWORD **ppdwAggrID,
 [out, size_is(,*pdwCount), string] LPWSTR **ppszAggrName,
 [out, size_is(,*pdwCount), string] LPWSTR **ppszAggrDesc
);

 HRESULT GetHistorianStatus(
 [out] OPCHDA_SERVERSTATUS *pwStatus,
 [out] FILETIME
 **pftCurrentTime,
 [out] FILETIME
 **pftStartTime,
 [out] WORD
 *pwMajorVersion,
 [out] WORD
 *pwMinorVersion,
 [out] WORD
 *pwBuildNumber,
 [out] DWORD
 *pdwMaxReturnValues,
 [out,string] LPWSTR
 *ppszStatusString,
 [out,string] LPWSTR
 *ppszVendorInfo
);

 HRESULT GetItemHandles(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] LPWSTR *pszItemID,
 [in, size_is(dwCount)] OPCHANDLE *phClient,
 [out, size_is(,dwCount)] OPCHANDLE **pphServer,
 [out, size_is(,dwCount)] HRESULT **ppErrors
);

 HRESULT ReleaseItemHandles(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE *phServer,
 [out, size_is(,dwCount)] HRESULT **ppErrors

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

102

OPC Historical Data Access Custom Interface Specification 1.0

);

 HRESULT ValidateItemIDs(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] LPWSTR *pszItemID,
 [out, size_is(,dwCount)] HRESULT **ppErrors
);

 HRESULT CreateBrowse(
 [in] DWORD
 dwCount,
 [in, size_is(dwCount)] DWORD
 *pdwAttrID,
 [in, size_is(dwCount)] OPCHDA_OPERATORCODES *pOperator,
 [in, size_is(dwCount)] VARIANT
 *vFilter,
 [out] IOPCHDA_Browser
 **pphBrowser,
 [out, size_is(,dwCount)] HRESULT
 **ppErrors
);
}

//**
// {1F1217B2-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b2, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B2-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_SyncRead: IUnknown
{
HRESULT ReadRaw (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] BOOL bBounds,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadProcessed (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD* haAggregate,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

103

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT ReadAtTime (
[in] DWORD dwNumTimeStamps,
[in, size_is(dwNumTimeStamps)] FILETIME *ftTimeStamps,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadModified(
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE *phServer,
[out, size_is(,dwNumItems)] OPCHDA_MODIFIEDITEM ** ppItemValues,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

HRESULT ReadAttribute (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] OPCHANDLE hServer,
[in] DWORD dwNumAttributes,
[in, size_is(dwNumAttributes)] DWORD
 *pdwAttributeIDs,
[out, size_is(,dwNumAttributes)] OPCHDA_ATTRIBUTE
 **ppAttributeValues,
[out, size_is(,dwNumAttributes)] HRESULT
 **ppErrors
);

}

//**
// {1F1217B3-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b3, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B3-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_SyncUpdate : IUnknown
{
HRESULT QueryCapabilities(
[out] OPCHDA_UPDATECAPABILITIES *pCapabilities
);

HRESULT Insert(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

104

OPC Historical Data Access Custom Interface Specification 1.0

);

HRESULT Replace(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT InsertReplace (
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT DeleteRaw (
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

HRESULT DeleteAtTime (
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);
}

//**
// {1F1217B4-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b4, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B4-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_SyncAnnotations : IUnknown
{
HRESULT QueryCapabilities(
[out] OPCHDA_ANNOTATIONCAPABILITIES *pCapabilities
);

HRESULT Read(
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE *phServer,
[out, size_is(,dwNumItems)] OPCHDA_ANNOTATION **ppAnnotationValues,

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

105

OPC Historical Data Access Custom Interface Specification 1.0

[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

HRESULT Insert(
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE *phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] OPCHDA_ANNOTATION *pAnnotationValues,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);
}

//**
// {1F1217B5-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b5, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B5-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_AsyncRead : IUnknown
{
HRESULT ReadRaw (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] BOOL bBounds,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT AdviseRaw(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadProcessed (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD* haAggregate,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

106

OPC Historical Data Access Custom Interface Specification 1.0

HRESULT AdviseProcessed (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] DWORD* haAggregate,
[in] DWORD dwNumIntervals,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadAtTime (
[in] DWORD dwTransactionID,
[in] DWORD dwNumTimeStamps,
[in, size_is(dwNumTimeStamps)] FILETIME *ftTimeStamps,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadModified (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT ReadAttribute (
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] OPCHANDLE hServer,
[in] DWORD dwNumAttributes,
[in, size_is(dwNumAttributes)] DWORD * dwAttributeIDs,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumAttributes)] HRESULT ** ppErrors
);

HRESULT Cancel(
[in] DWORD dwCancelID
);

}

//**
// {1F1217B6-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b6, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B6-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

107

OPC Historical Data Access Custom Interface Specification 1.0

interface IOPCHDA_AsyncUpdate : IUnknown
{
HRESULT QueryCapabilities(
[out] OPCHDA_UPDATECAPABILITIES *pCapabilities
);

HRESULT Insert(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT Replace (
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT InsertReplace(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[in, size_is(dwNumItems)] VARIANT *vDataValues,
[in, size_is(dwNumItems)] DWORD *pdwQualities,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT DeleteRaw (
[in] DWORD dwTransactionID,
[in,out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is (dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

HRESULT DeleteAtTime (
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME *ftTimeStamps,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT **ppErrors
);

HRESULT Cancel(
[in] DWORD dwCancelID

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

108

OPC Historical Data Access Custom Interface Specification 1.0

);

}

//**
// {1F1217B7-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b7, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B7-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_AsyncAnnotations: IUnknown
{
HRESULT QueryCapabilities(
[out] OPCHDA_ANNOTATIONCAPABILITIES *pCapabilities
);

HRESULT Read(
[in] DWORD dwTransactionID,
[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT Insert(
[in] DWORD dwTransactionID,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,
[in, size_is(dwNumItems)] FILETIME
 *ftTimeStamps,
[in, size_is(dwNumItems)] OPCHDA_ANNOTATION
 *pAnnotationValues,
[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT Cancel(
[in] DWORD dwCancelID
);

}

//**
// {1F1217B8-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b8, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);
[
 object,
 uuid(1F1217B8-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

109

OPC Historical Data Access Custom Interface Specification 1.0

interface IOPCHDA_Playback : IUnknown
{

[in, out] OPCHDA_TIME *htStartTime,

[in] FILETIME ftUpdateDuration,

[in, size_is(dwNumItems)] OPCHANDLE * phServer,

);

[in] DWORD dwTransactionID,

[in, size_is(dwNumItems)] DWORD* haAggregate,

);

[in, size_is(dwNumItems)] HRESULT *phrErrors

HRESULT ReadRawWithUpdate(
[in] DWORD dwTransactionID,

[in, out] OPCHDA_TIME *htEndTime,
[in] DWORD dwNumValues,

[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,

[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors

HRESULT ReadProcessedWithUpdate(

[in, out] OPCHDA_TIME *htStartTime,
[in, out] OPCHDA_TIME *htEndTime,
[in] FILETIME ftResampleInterval,
[in] DWORD dwNumIntervals,
[in] FILETIME ftUpdateInterval,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHANDLE * phServer,

[out] DWORD *pdwCancelID,
[out, size_is(,dwNumItems)] HRESULT ** ppErrors
);

HRESULT Cancel(
[in] DWORD dwCancelID

}

// {1F1217B9-DEE0-11d2-A5E5-000086339399}
//DEFINE_GUID(<<name>>,
//0x1f1217b9, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);

[
 object,
 uuid(1F1217B9-DEE0-11d2-A5E5-000086339399),
 pointer_default(unique)
]
interface IOPCHDA_DataCallback : IUnknown
{
HRESULT OnDataChange(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM *pItemValues,

);

HRESULT OnReadComplete(
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM *pItemValues,

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

110

OPC Historical Data Access Custom Interface Specification 1.0

[in, size_is(dwNumItems)] HRESULT *phrErrors
);

HRESULT OnReadAttributeComplete(

[in] OPCHANDLE hClient,

[in, size_is(dwNumItems)] HRESULT *phrErrors

HRESULT OnReadAnnotations(

[in] DWORD dwNumItems,

);

[in] DWORD dwTransactionID,

[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,

[in] DWORD dwCancelID

HRESULT OnReadModifiedComplete (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_MODIFIEDITEM *pItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,

[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ATTRIBUTE *pAttributeValues,

);

[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,

[in, size_is(dwNumItems)] OPCHDA_ANNOTATION
 *pAnnotationValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors

HRESULT OnInsertAnnotations (
[in] DWORD dwTransactionID,
[in] HRESULT hrStatus,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE *phClients,
[in, size_is(dwCount)] HRESULT *phrErrors
);

HRESULT OnPlayback (

[in] HRESULT hrStatus,
[in] DWORD dwNumItems,
[in, size_is(dwNumItems)] OPCHDA_ITEM ** ppItemValues,
[in, size_is(dwNumItems)] HRESULT *phrErrors
);

HRESULT OnUpdateComplete (

[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE *phClients,
[in, size_is(dwCount)] HRESULT *phrErrors
);

HRESULT OnCancelComplete(

);
}

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

111

OPC Historical Data Access Custom Interface Specification 1.0

// This TYPELIB is generated as a convenience to users of high level
tools

// {1F1217BA-DEE0-11d2-A5E5-000086339399}

[

 helpstring("OPCHDA 1.0 Type Library")

{

 interface IOPCHDA_AsyncUpdate ;

// which are capable of using or browsing TYPELIBs.
// 'Smart Pointers' in VC5 is one example.

//DEFINE_GUID(<<name>>,
//0x1f1217ba, 0xdee0, 0x11d2, 0xa5, 0xe5, 0x0, 0x0, 0x86, 0x33, 0x93,
0x99);

 uuid(1F1217BA-DEE0-11d2-A5E5-000086339399),
 version(1.0),

]
library OPCHDA

 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 interface IOPCHDA_Server ;
 interface IOPCHDA_Browser ;
 interface IOPCHDA_SyncRead;
 interface IOPCHDA_SyncUpdate ;
 interface IOPCHDA_SyncAnnotations ;
 interface IOPCHDA_AsyncRead ;

 interface IOPCHDA_AsyncAnnotations;
 interface IOPCHDA_Playback ;
 interface IOPCHDA_DataCallback ;

};

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

112

OPC Historical Data Access Custom Interface Specification 1.0

__

COPYRIGHTED AND LICENSEABLE MATERIAL / Reproduce Only in Accordance with License Agreement

113

